References

  1. A.B. Lindstrom, M.J. Strynar, E. Laurence Libelo, Polyfluorinated compounds: past, present, and future, Environ. Sci. Technol., 45 (2011) 7954–7961.
  2. S. Rayne, K. Forest, Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 44 (2009) 1145−1199.
  3. L. Ahrens, Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate, J. Environ. Monit., 13 (2011) 20−31.
  4. M.P. Krafft, J.G. Riess, Per- and polyfluorinated substances (PFAS): environmental challenges, Curr. Opin. Colloid Interface Sci., 20 (2015) 192−212.
  5. I.T. Cousins, R. Vestergren, Z. Wang, M. Scheringer, M.S. McLachlan, The precautionary principle and chemicals management: the example of perfluoroalkyl acids in groundwater, Environ. Int., 94 (2016) 331−340.
  6. C.A. Moody, J.A. Field, Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams, Environ. Sci. Technol., 34 (2000) 3864−3870.
  7. C.A. Moody, J.A. Field, Determination of perfluorocarboxylates in groundwater impacted by fire-fighting activity, Environ. Sci. Technol., 33 (1999) 2800−2806.
  8. W.J. Backe, T.C. Day, J.A. Field, Zwitterionic, cationic, anionic fluorinated chemicals in AFFF formulations and groundwater from U.S. military bases by non-aqueous large-volume injection HPLC-MS/MS, Environ. Sci. Technol., 47 (2013) 5226−5234.
  9. R.H. Anderson, G.C. Long, R.C. Porter, J.K. Anderson, Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than firetraining areas: field-validation of critical fate and transport properties, Chemosphere, 150 (2016) 678−685.
  10. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA), EPA 822-R-16-005, United States Environmental Protection Agency, Washington, D.C., 2016.
  11. N. Viswanathan, S. Meenakshi, Selective fluoride adsorption by a hydrotalcite/chitosan composite, Appl. Clay Sci., 48 (2010) 607–611.
  12. L. Batistella, L.D. Venquiaruto, M. Di Luccio, J.V. Oliveira, S.B.C. Pergher, M.A. Mazutti, D. de Oliveira, A.J. Mossi, H. Treichel, R. Dallago, Evaluation of acid activation under the adsorption capacity of double layered hydroxides of Mg–Al–CO3 type for fluoride removal from aqueous medium, Ind. Eng. Chem. Res., 50 (2011) 6871–6876.
  13. M. Pontié, H. Dach, J. Leparc, M. Hafsi, A. Lhassani, Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification, Desalination, 221 (2008) 174–191.
  14. M. Mohapatra, S. Anand, B.K. Mishra, D.E. Giles, P. Singh, Review of fluoride removal from drinking water, J. Environ. Manage., 91 (2009) 67–77.
  15. L. Liang, H. Jing, W. Min, D. Xue, Kinetic studies on fluoride removal by calcined layered double hydroxides, Ind. Eng. Chem. Res., 45 (2006) 8623–8628.
  16. L. Liang, L. Luo, Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants, J. Radioanal. Nucl. Chem., 273 (2007) 221–226.
  17. Y. Hong, J.-Z. Xiao, Q.-Z. Yu, W. Min, D. Xue, G.E. David, The Periodic Table II, Springer Nature Switzerland AG, Oxford, 2019, p. 96.