References
- M.M.M. Kuypers, H.K. Marchant, B. Kartal, The microbial
nitrogen-cycling network, Nat. Rev. Microbiol., 16 (2018)
263–276.
- S. Zhang, J.F. Su, Z.J. Zheng, S. Yang, Denitrification strategies
of strain YSF15 in response to carbon scarcity: based on
organic nitrogen, soluble microbial products and extracellular
polymeric substances, Bioresour. Technol., 314 (2020) 123733,
doi: 10.1016/j.biortech.2020.123733.
- N. Kazakis, I. Matiatos, M.M. Ntona, M. Bannenberg,
K. Kalaitzidou, E. Kaprara, M. Mitrakas, A. Ioannidou,
G. Vargemezis, K. Voudouris, Origin, implications and management
strategies for nitrate pollution in surface and ground
waters of Anthemountas basin based on a δ15N–NO3– and δ18O–NO3– isotope approach, Sci. Total Environ., 724 (2020) 38211,
doi: 10.1016/j.scitotenv.2020.138211.
- K. Ren, X. Pan, D. Yuan, J. Zeng, J. Liang, C. Peng, Nitrate source
and nitrogen dynamics in a karst aquifer with mixed nitrogen
inputs (Southwest China): revealed by multiple stable isotopic
and hydro-chemical proxies, Water Res., 210 (2022) 118000,
doi: 10.1016/j.watres.2021.118000.
- A.Q. Tariqi, C.C. Naughton, Water, health, and environmental
justice in California: geospatial analysis of nitrate contamination
and thyroid cancer, Environ. Eng. Sci., 238 (2021)
377–388.
- CDPH, Retrieved From Drinking Water Contaminants: Nitrate,
California Department of Public Health, 2013. Available
at: http://www.ehib.org/page.jsp?page_key=14
- WHO, Guidelines for Drinking-Water Quality: Incorporating
First and Second Addenda to Third Edition, Vol. 1, World
Health Organization, WHO Press, Geneva, 2008.
- S. Cao, Y. Fei, X. Tian, X. Cui, X. Zhang, R. Yuan, Y. Li,
Determining the origin and fate of nitrate in the Nanyang
Basin, Central China, using environmental isotopes and the
Bayesian mixing model, Environ. Sci. Pollut. Res. Int., 28 (2021)
48343–48361.
- J. Xin, Y. Wang, Z.L. Shen, Y. Liu, H.T. Wang, X.L. Zheng,
Critical review of measures and decision support tools for
groundwater nitrate management: a surface-to-groundwater
profile perspective, J. Hydrol., 598 (2021) 126386, doi: 10.1016/j.jhydrol.2021.126386.
- E. Abascal, L. Gómez-Coma, I. Ortiz, A. Ortiz, Global
diagnosis of nitrate pollution in groundwater and review of
removal technologies, Sci. Total Environ., 810 (2022) 152233,
doi: 10.1016/j.scitotenv.2021.152233.
- T.M. Alslaibi, Y. Kishawi, Z. Abunada, Evaluating impacts of
recharging partially treated wastewater on groundwater aquifer
in semi-arid region by integration of monitoring program and
GIS technique, Environ. Sci. Pollut. Res., 24 (2017) 13674–13686.
- N. Devaraj, S. Chidambaram, U. Vasudevan, K. Pradeep,
M. Nepolian, M.V. Prasanna, V.S. Adithya,
R. Thilagavathi,
C. Thivya, B. Panda, Determination of the major geochemical
processes of groundwater along the cretaceous-tertiary
boundary of trichinopoly, Tamilnadu, India, Acta Geochim.,
5 (2022) 760–781.
- D.M. Han, M.J. Curell, G.L. Cao, Deep challenges for China’s
war on water pollution, Environ. Pollut., 218 (2016) 1222–1233.
- W. Feng, C. Wang, X. Lei, H. Wang, X. Zhang, Distribution of
nitrate content in groundwater and evaluation of potential
health risks: a case study of rural areas in northern China, Int.
J. Environ. Res. Public Health, 17 (2020) 9390, doi: 10.3390/
ijerph17249390.
- J. Wang, L. Chu, Biological nitrate removal from water and
wastewater by solid-phase denitrification process, Biotechnol.
Adv., 34 (2016) 1103–1112.
- D.J. Wan, Y.D. Liu, Y.Y. Wang, H.J. Wang, S.H. Xiao, Simultaneous
bio-autotrophic reduction of perchlorate and nitrate in a sulfur
packed bed reactor: kinetics and bacterial community structure,
Water Res., 108 (2017) 280–292.
- Y.M. Pang, J.L. Wang, Various electron donors for biological
nitrate removal: a review, Sci. Total Environ., 749 (2021) 148699,
doi: 10.1016/j.scitotenv.2021.148699.
- F. Rezvani, M.H. Sarrafzadeh, S. Ebrahimi, H.M. Oh, Nitrate
removal from drinking water with a focus on biological
methods: a review, Environ. Sci. Pollut. Res. Int., 26 (2019)
1124–1141.
- L. Liu, F. Wang, S. Xu, W. Sun, Y. Wang, M. Ji, Woodchips
bioretention column for stormwater treatment: nitrogen
removal performance, carbon source and microbial community
analysis, Chemosphere, 285 (2021) 131519, doi: 10.1016/j.chemosphere.2021.131519.
- A. Grau-Martínez, C. Torrentó, R. Carrey, P. Rodríguez-Escales,
C. Domènech, G. Ghiglieri, A. Soler, N. Otero, Feasibility of
two low-cost organic substrates for inducing denitrification in
artificial recharge ponds: batch and flow-through experiments,
J. Contam. Hydrol., 198 (2017) 48–58.
- A. Hernández-Lara, M. Ros, M.D. Pérez-Murcia, M.Á. Bustamante,
R. Moral, F.J. Andreu-Rodríguez,
J.A. Fernández,
C. Egea-Gilabert, J.A. Pascual, The influence of feedstocks and
additives in 23 added-value composts as a growing media
component on Pythium irregulare suppressivity, Waste Manage.,
120 (2021) 351–363.
- A. Hernández-Lara, M. Ros, J. Cuartero, M.Á. Bustamante,
R. Moral, F.J. Andreu-Rodríguez, J.A. Fernández,
C. Egea-
Gilabert, J.A. Pascual, Bacterial and fungal community dynamics
during different stages of
agro-industrial waste composting
and its relationship with compost suppressiveness, Sci. Total
Environ., 805 (2022) 150330, doi: 10.1016/j.scitotenv.2021.150330.
- M.D. Pérez-Murcia, E. Martínez-Sabater, M.A. Domene,
A. González-Céspedes, M.A. Bustamante,
F.C. Marhuenda-Egea, X. Barber, D.B. López-Lluch, R. Moral, Role of proteins
and soluble peptides as limiting components during the
co-compositing of agro-industrial wastes, J. Environ. Manage.,
300 (2021) 113701, doi: 10.1016/j.jenvman.2021.113701.
- Z. Si, X. Song, Y. Wang, X. Cao, Y. Zhao, B. Wang, Y. Chen,
A. Arefe, Intensified heterotrophic denitrification in constructed
wetlands using four solid sources: denitrification
efficiency and bacterial community structure, Bioresour.
Technol., 267 (2018) 416–425.
- H.S. Wang, N. Chen, C.P. Feng, Y. Deng, Y. Gao, Research on
efficient denitrification system based on banana peel waste in
sequencing batch reactors: performance, microbial behavior
and dissolved organic matter evolution, Chemosphere,
253 (2020) 126693, doi: 10.1016/j.chemosphere.2020.126693.
- L. Guo, Y. Guo, M. Sun, M. Gao, Y. Zhao, Z. She, Enhancing
denitrification with waste sludge carbon source:
the substrate
metabolism process and mechanisms, Environ. Sci. Pollut.
Res. Int., 25 (2018) 13079–13092.
- G. Huang, Y. Huang, H. Hu, F. Liu, Y. Zhang, R. Deng,
Remediation of nitrate-nitrogen contaminated groundwater
using a pilot-scale two-layer heterotrophic-autotrophic
denitrification permeable reactive barrier with spongy iron/pine bark, Chemosphere, 130 (2015) 8–16.
- M.Á. Bustamante, M. Michelozzi, A. Barra Caracciolo, P. Grenni,
J. Verbokkem, P. Geerdink, C. Safi, I. Nogues, Effects of soil
fertilization on terpenoids and other carbon-based secondary
metabolites in Rosmarinus officinalis plants: a comparative
study, Plants (Basel), 9 (2020) 830, doi: 10.3390/plants9070830.
- A. Tullus, L. Rusalepp, R. Lutter, K. Rosenvald, A. Kaasik,
L. Rytter, S. Kontunen-Soppela, E. Oksanen, Climate and
competitive status modulate the variation in secondary
metabolites more in leaves than in fine roots of Betula pendula,
Front. Plant Sci., 12 (2021) 746165, doi: 10.3389/fpls.2021.746165.
- SEPA, Water and Wastewater Monitoring Analysis Method,
4th ed., China Environmental Science Press, Beijing, 2002,
pp. 254–284.
- J. Zhang, C. Feng, S. Hong, H. Hao, Y. Yang, Behavior of solid
carbon sources for biological denitrification in groundwater
remediation, Water Sci. Technol., 65 (2012) 1696–1704.
- M. Hata, Y. Amano, P. Thiravetyan, M. Machida, Preparation of
bamboo chars and bamboo activated carbons to remove color
and COD from ink wastewater, Water Environ. Res., 88 (2016)
87–96.
- L. Feng, K. Chen, D. Han, J. Zhao, Y. Lu, G. Yang, J. Mu, X. Zhao,
Comparison of nitrogen removal and microbial properties
in solid-phase denitrification systems for water purification
with various pretreated lignocellulosic carriers, Bioresour.
Technol., 224 (2017) 236–245.
- X. Liu, R. Sun, S. Hu, Y. Zhong, Y. Wu, Aromatic compounds
releases aroused by sediment resuspension alter nitrate
transformation rates and pathways during aerobic-anoxic
transition, J. Hazard. Mater., 424 (2022) 127365, doi: 10.1016/j.jhazmat.2021.127365.
- H.S. Wang, C.P. Feng, Y. Deng, Effect of potassium on nitrate
removal from groundwater in agricultural waste-based
heterotrophic denitrification system, Sci. Total Environ.,
703 (2020) 134830, doi:10.1016/j.scitotenv.2019.134830.
- T. Li, X.L. Yang, H.L. Song, J.J. Wu, J.Y. Xu, Alkali-treated
cellulose carrier enhancing denitrification in membrane
bioreactor, Int. Biodeterior. Biodegrad., 145 (2019) 104813,
doi: 10.1016/j.ibiod.2019.104813.
- Q. Zhang, J. Sun, J. Liu, G. Huang, C. Lu, Y. Zhang, Driving
mechanism and sources of groundwater nitrate contamination
in the rapidly urbanized region of South China, J. Contam.
Hydrol., 182 (2015) 221–230.
- S. Zhu, M. Zheng, C. Li, M. Gui, Q. Chen, J. Ni, Special role of
corn flour as an ideal carbon source for aerobic denitrification
with minimized nitrous oxide emission, Bioresour. Technol.,
186 (2015) 45–51.
- N.L. Hoover, A. Bhandari, M.L. Soupir, T.B. Moorman,
Woodchip denitrification bioreactors: impact of temperature
and hydraulic retention time on nitrate removal, J. Environ.
Qual., 45 (2016) 803–812.
- C. Lepine, L. Christianson, K. Sharrer, S. Summerfelt,
Optimizing hydraulic retention times in denitrifying woodchip
bioreactors treating recirculating aquaculture system
wastewater, J. Environ. Qual., 45 (2016) 813–821.
- A.A. Kouanda, Nitrate and Phosphate Removal From
Denitrification Bioreactors Using Woodchips, Steel Chips
and Agricultural Residue Media, Electronic Theses and
Dissertations 5247, 2021. Available at: https://openprairie.
sdstate.edu/etd/5247
- Q. Shen, F. Ji, J. Wei, D. Fang, Q. Zhang, L. Jiang, A. Cai,
L. Kuang, The influence mechanism of temperature on solid
phase denitrification based on denitrification performance,
carbon balance, and microbial analysis, Sci. Total Environ.,
732 (2020) 139333, doi: 10.1016/j.scitotenv.2020.139333.
- Q. He, C. Feng, T. Peng, N. Chen, Q. Hu, C. Hao, Denitrification
of synthetic nitrate-contaminated groundwater combined with
rice washing drainage treatment, Ecol. Eng., 95 (2016) 152–159.
- Q. He, C. Feng, N. Chen, D. Zhang, T. Hou, J. Dai, C. Hao, B. Mao,
Characterizations of dissolved organic matter and bacterial
community structures in rice washing drainage (RWD)-based synthetic groundwater denitrification, Chemosphere,
215 (2019) 142–152.