References

  1. M.M.M. Kuypers, H.K. Marchant, B. Kartal, The microbial nitrogen-cycling network, Nat. Rev. Microbiol., 16 (2018) 263–276.
  2. S. Zhang, J.F. Su, Z.J. Zheng, S. Yang, Denitrification strategies of strain YSF15 in response to carbon scarcity: based on organic nitrogen, soluble microbial products and extracellular polymeric substances, Bioresour. Technol., 314 (2020) 123733, doi: 10.1016/j.biortech.2020.123733.
  3. N. Kazakis, I. Matiatos, M.M. Ntona, M. Bannenberg, K. Kalaitzidou, E. Kaprara, M. Mitrakas, A. Ioannidou,
    G. Vargemezis, K. Voudouris, Origin, implications and management strategies for nitrate pollution in surface and ground waters of Anthemountas basin based on a δ15N–NO3 and δ18O–NO3 isotope approach, Sci. Total Environ., 724 (2020) 38211, doi: 10.1016/j.scitotenv.2020.138211.
  4. K. Ren, X. Pan, D. Yuan, J. Zeng, J. Liang, C. Peng, Nitrate source and nitrogen dynamics in a karst aquifer with mixed nitrogen inputs (Southwest China): revealed by multiple stable isotopic and hydro-chemical proxies, Water Res., 210 (2022) 118000, doi: 10.1016/j.watres.2021.118000.
  5. A.Q. Tariqi, C.C. Naughton, Water, health, and environmental justice in California: geospatial analysis of nitrate contamination and thyroid cancer, Environ. Eng. Sci., 238 (2021) 377–388.
  6. CDPH, Retrieved From Drinking Water Contaminants: Nitrate, California Department of Public Health, 2013. Available at: http://www.ehib.org/page.jsp?page_key=14
  7. WHO, Guidelines for Drinking-Water Quality: Incorporating First and Second Addenda to Third Edition, Vol. 1, World Health Organization, WHO Press, Geneva, 2008.
  8. S. Cao, Y. Fei, X. Tian, X. Cui, X. Zhang, R. Yuan, Y. Li, Determining the origin and fate of nitrate in the Nanyang Basin, Central China, using environmental isotopes and the Bayesian mixing model, Environ. Sci. Pollut. Res. Int., 28 (2021) 48343–48361.
  9. J. Xin, Y. Wang, Z.L. Shen, Y. Liu, H.T. Wang, X.L. Zheng, Critical review of measures and decision support tools for groundwater nitrate management: a surface-to-groundwater profile perspective, J. Hydrol., 598 (2021) 126386, doi: 10.1016/j.jhydrol.2021.126386.
  10. E. Abascal, L. Gómez-Coma, I. Ortiz, A. Ortiz, Global diagnosis of nitrate pollution in groundwater and review of removal technologies, Sci. Total Environ., 810 (2022) 152233, doi: 10.1016/j.scitotenv.2021.152233.
  11. T.M. Alslaibi, Y. Kishawi, Z. Abunada, Evaluating impacts of recharging partially treated wastewater on groundwater aquifer in semi-arid region by integration of monitoring program and GIS technique, Environ. Sci. Pollut. Res., 24 (2017) 13674–13686.
  12. N. Devaraj, S. Chidambaram, U. Vasudevan, K. Pradeep, M. Nepolian, M.V. Prasanna, V.S. Adithya,
    R. Thilagavathi, C. Thivya, B. Panda, Determination of the major geochemical processes of groundwater along the cretaceous-tertiary boundary of trichinopoly, Tamilnadu, India, Acta Geochim., 5 (2022) 760–781.
  13. D.M. Han, M.J. Curell, G.L. Cao, Deep challenges for China’s war on water pollution, Environ. Pollut., 218 (2016) 1222–1233.
  14. W. Feng, C. Wang, X. Lei, H. Wang, X. Zhang, Distribution of nitrate content in groundwater and evaluation of potential health risks: a case study of rural areas in northern China, Int. J. Environ. Res. Public Health, 17 (2020) 9390, doi: 10.3390/ ijerph17249390.
  15. J. Wang, L. Chu, Biological nitrate removal from water and wastewater by solid-phase denitrification process, Biotechnol. Adv., 34 (2016) 1103–1112.
  16. D.J. Wan, Y.D. Liu, Y.Y. Wang, H.J. Wang, S.H. Xiao, Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: kinetics and bacterial community structure, Water Res., 108 (2017) 280–292.
  17. Y.M. Pang, J.L. Wang, Various electron donors for biological nitrate removal: a review, Sci. Total Environ., 749 (2021) 148699, doi: 10.1016/j.scitotenv.2021.148699.
  18. F. Rezvani, M.H. Sarrafzadeh, S. Ebrahimi, H.M. Oh, Nitrate removal from drinking water with a focus on biological methods: a review, Environ. Sci. Pollut. Res. Int., 26 (2019) 1124–1141.
  19. L. Liu, F. Wang, S. Xu, W. Sun, Y. Wang, M. Ji, Woodchips bioretention column for stormwater treatment: nitrogen removal performance, carbon source and microbial community analysis, Chemosphere, 285 (2021) 131519, doi: 10.1016/j.chemosphere.2021.131519.
  20. A. Grau-Martínez, C. Torrentó, R. Carrey, P. Rodríguez-Escales, C. Domènech, G. Ghiglieri, A. Soler, N. Otero, Feasibility of two low-cost organic substrates for inducing denitrification in artificial recharge ponds: batch and flow-through experiments, J. Contam. Hydrol., 198 (2017) 48–58.
  21. A. Hernández-Lara, M. Ros, M.D. Pérez-Murcia, M.Á. Bustamante, R. Moral, F.J. Andreu-Rodríguez,
    J.A. Fernández, C. Egea-Gilabert, J.A. Pascual, The influence of feedstocks and additives in 23 added-value composts as a growing media component on Pythium irregulare suppressivity, Waste Manage., 120 (2021) 351–363.
  22. A. Hernández-Lara, M. Ros, J. Cuartero, M.Á. Bustamante, R. Moral, F.J. Andreu-Rodríguez, J.A. Fernández,
    C. Egea- Gilabert, J.A. Pascual, Bacterial and fungal community dynamics during different stages of
    agro-industrial waste composting and its relationship with compost suppressiveness, Sci. Total Environ., 805 (2022) 150330, doi: 10.1016/j.scitotenv.2021.150330.
  23. M.D. Pérez-Murcia, E. Martínez-Sabater, M.A. Domene, A. González-Céspedes, M.A. Bustamante,
    F.C. Marhuenda-Egea, X. Barber, D.B. López-Lluch, R. Moral, Role of proteins and soluble peptides as limiting components during the co-compositing of agro-industrial wastes, J. Environ. Manage., 300 (2021) 113701, doi: 10.1016/j.jenvman.2021.113701.
  24. Z. Si, X. Song, Y. Wang, X. Cao, Y. Zhao, B. Wang, Y. Chen, A. Arefe, Intensified heterotrophic denitrification in constructed wetlands using four solid sources: denitrification efficiency and bacterial community structure, Bioresour. Technol., 267 (2018) 416–425.
  25. H.S. Wang, N. Chen, C.P. Feng, Y. Deng, Y. Gao, Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: performance, microbial behavior and dissolved organic matter evolution, Chemosphere, 253 (2020) 126693, doi: 10.1016/j.chemosphere.2020.126693.
  26. L. Guo, Y. Guo, M. Sun, M. Gao, Y. Zhao, Z. She, Enhancing denitrification with waste sludge carbon source:
    the substrate metabolism process and mechanisms, Environ. Sci. Pollut. Res. Int., 25 (2018) 13079–13092.
  27. G. Huang, Y. Huang, H. Hu, F. Liu, Y. Zhang, R. Deng, Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark, Chemosphere, 130 (2015) 8–16.
  28. M.Á. Bustamante, M. Michelozzi, A. Barra Caracciolo, P. Grenni, J. Verbokkem, P. Geerdink, C. Safi, I. Nogues, Effects of soil fertilization on terpenoids and other carbon-based secondary metabolites in Rosmarinus officinalis plants: a comparative study, Plants (Basel), 9 (2020) 830, doi: 10.3390/plants9070830.
  29. A. Tullus, L. Rusalepp, R. Lutter, K. Rosenvald, A. Kaasik, L. Rytter, S. Kontunen-Soppela, E. Oksanen, Climate and competitive status modulate the variation in secondary metabolites more in leaves than in fine roots of Betula pendula, Front. Plant Sci., 12 (2021) 746165, doi: 10.3389/fpls.2021.746165.
  30. SEPA, Water and Wastewater Monitoring Analysis Method, 4th ed., China Environmental Science Press, Beijing, 2002, pp. 254–284.
  31. J. Zhang, C. Feng, S. Hong, H. Hao, Y. Yang, Behavior of solid carbon sources for biological denitrification in groundwater remediation, Water Sci. Technol., 65 (2012) 1696–1704.
  32. M. Hata, Y. Amano, P. Thiravetyan, M. Machida, Preparation of bamboo chars and bamboo activated carbons to remove color and COD from ink wastewater, Water Environ. Res., 88 (2016) 87–96.
  33. L. Feng, K. Chen, D. Han, J. Zhao, Y. Lu, G. Yang, J. Mu, X. Zhao, Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers, Bioresour. Technol., 224 (2017) 236–245.
  34. X. Liu, R. Sun, S. Hu, Y. Zhong, Y. Wu, Aromatic compounds releases aroused by sediment resuspension alter nitrate transformation rates and pathways during aerobic-anoxic transition, J. Hazard. Mater., 424 (2022) 127365, doi: 10.1016/j.jhazmat.2021.127365.
  35. H.S. Wang, C.P. Feng, Y. Deng, Effect of potassium on nitrate removal from groundwater in agricultural waste-based heterotrophic denitrification system, Sci. Total Environ., 703 (2020) 134830, doi:10.1016/j.scitotenv.2019.134830.
  36. T. Li, X.L. Yang, H.L. Song, J.J. Wu, J.Y. Xu, Alkali-treated cellulose carrier enhancing denitrification in membrane bioreactor, Int. Biodeterior. Biodegrad., 145 (2019) 104813, doi: 10.1016/j.ibiod.2019.104813.
  37. Q. Zhang, J. Sun, J. Liu, G. Huang, C. Lu, Y. Zhang, Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of South China, J. Contam. Hydrol., 182 (2015) 221–230.
  38. S. Zhu, M. Zheng, C. Li, M. Gui, Q. Chen, J. Ni, Special role of corn flour as an ideal carbon source for aerobic denitrification with minimized nitrous oxide emission, Bioresour. Technol., 186 (2015) 45–51.
  39. N.L. Hoover, A. Bhandari, M.L. Soupir, T.B. Moorman, Woodchip denitrification bioreactors: impact of temperature and hydraulic retention time on nitrate removal, J. Environ. Qual., 45 (2016) 803–812.
  40. C. Lepine, L. Christianson, K. Sharrer, S. Summerfelt, Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater, J. Environ. Qual., 45 (2016) 813–821.
  41. A.A. Kouanda, Nitrate and Phosphate Removal From Denitrification Bioreactors Using Woodchips, Steel Chips and Agricultural Residue Media, Electronic Theses and Dissertations 5247, 2021. Available at: https://openprairie. sdstate.edu/etd/5247
  42. Q. Shen, F. Ji, J. Wei, D. Fang, Q. Zhang, L. Jiang, A. Cai, L. Kuang, The influence mechanism of temperature on solid phase denitrification based on denitrification performance, carbon balance, and microbial analysis, Sci. Total Environ., 732 (2020) 139333, doi: 10.1016/j.scitotenv.2020.139333.
  43. Q. He, C. Feng, T. Peng, N. Chen, Q. Hu, C. Hao, Denitrification of synthetic nitrate-contaminated groundwater combined with rice washing drainage treatment, Ecol. Eng., 95 (2016) 152–159.
  44. Q. He, C. Feng, N. Chen, D. Zhang, T. Hou, J. Dai, C. Hao, B. Mao, Characterizations of dissolved organic matter and bacterial community structures in rice washing drainage (RWD)-based synthetic groundwater denitrification, Chemosphere, 215 (2019) 142–152.