References

  1. A. Iqbal, M.I. Jalees, M.U. Farooq, E. Cevik, N.D. Mu’azu, Synthesis and application of maghemite nanoparticles for water treatment: response surface method, Desal. Water Treat., 244 (2021) 212–225.
  2. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167.
  3. H. Guo, X. Li, G. Li, Y. Liu, P. Rao, Preparation of SnOx-MnOx@Al2O3 for catalytic ozonation of phenol in hypersaline wastewater, Ozone: Sci. Eng., (2022) 1–14, doi: 10.1080/01919512.2022.2084031.
  4. L. Seid, D. Lakhdari, M. Berkani, O. Belgherbi, D. Chouder, Y. Vasseghian, N. Lakhdari, High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials, J. Hazard. Mater., 423 (2022) 126986, doi: 10.1016/j.jhazmat.2021.126986.
  5. C. Eryılmaz, A. Genç, Review of treatment technologies for the removal of phenol from wastewaters, J. Water Chem. Technol., 43 (2021) 145–154.
  6. W.F. Elmobarak, B.H. Hameed, F. Almomani, A.Z. Abdullah, A review on the treatment of petroleum refinery wastewater using advanced oxidation processes, Catalysts, 11 (2021) 782, doi: 10.3390/catal11070782.
  7. X. He, H. Chi, M. He, B. Zhang, J. Zhang, D. Wang, J. Ma, Efficient removal of halogenated phenols by vacuum-UV system through combined photolysis and OH oxidation: efficiency, mechanism and economic analysis, J. Hazard. Mater., 403 (2021) 123286, doi: 10.1016/j.jhazmat.2020.123286.
  8. Y. Dehmani, D. Dridi, T. Lamhasni, S. Abouarnadasse, R. Chtourou, E. Lima, Review of phenol adsorption on transition metal oxides and other adsorbents, J. Water Process Eng., 49 (2022) 102965, doi:10.1016/j.jwpe.2022.102965.
  9. W.H. Saputera, A.S. Putrie, A.A. Esmailpour, D. Sasongko, V. Suendo, R.R. Mukti, Technology advances in phenol removals: current progress and future perspectives, Catalysts, 11 (2021) 998, doi: 10.3390/catal11080998.
  10. Yu.V. Sukhatskiy, Z.O. Znak, O.I. Zin, Cavitation and its combinations with other advanced oxidation processes in phenol wastewater treatment: a review, Issues Chem. Chem. Technol. (Voprosy khimii i khimicheskoi technologii), 4 (2020) 16–30, doi: 10.32434/0321-4095-2020-131-4-16-30.
  11. A. Iqbal, E. Cevik, A. Bozkurt, S.M.M. Asiri, O. Alagha, T.F. Qahtan, M.I. Jalees, M.U. Farooq, Ultrahigh adsorption by regenerable iron-cobalt core-shell nanospheres and their synergetic effect on nanohybrid membranes for removal of malachite green dye, J. Environ. Chem. Eng., 10 (2022) 107968, doi: 10.1016/j.jece.2022.107968.
  12. A. Iqbal, M.I. Jalees, M.U. Farooq, E. Cevik, A. Bozkurt, Superfast adsorption and high-performance tailored membrane filtration by engineered Fe-Ni-Co nanocomposite for simultaneous removal of surface water pollutants, Colloids Surf., A, 652 (2022) 129751, doi: 10.1016/j.colsurfa.2022.129751.
  13. A.M. Girelli, L. Quattrocchi, F.R. Scuto, Design of bioreactor based on immobilized laccase on silica-chitosan support for phenol removal in continuous mode, J. Biotechnol., 337 (2021) 8–17.
  14. L. Yu, D.P. Gamliel, B. Markunas, J.A. Valla, A promising solution for food waste: preparing activated carbons for phenol removal from water streams, ACS Omega, 6 (2021) 8870–8883.
  15. N. Elboughdiri, B. Azeem, D. Ghernaout, S. Ghareba, K. Kriaa, Steam-activated sawdust efficiency in treating wastewater contaminated by heavy metals and phenolic compounds, J. Water Reuse Desalin., 11 (2021) 391–409.
  16. A. Othmani, S. Magdouli, P.S. Kumar, A. Kapoor, P.V. Chellam, Ö. Gökkuş, Agricultural waste materials for adsorptive removal of phenols, chromium(VI) and cadmium(II) from wastewater: a review, Environ. Res., 204 (2022) 111916, doi: 10.1016/j.envres.2021.111916.
  17. Y. Dehmani, O. El Khalki, H. Mezougane, S. Abouarnadasse, Comparative study on adsorption of cationic dyes and phenol by natural clays, Chem. Data Collect., 33 (2021) 100674, doi: 10.1016/j.cdc.2021.100674.
  18. Y. Sun, T. Wang, X. Sun, L. Bai, C. Han, P. Zhang, The potential of biochar and lignin-based adsorbents for wastewater treatment: comparison, mechanism, and application—a review, Ind. Crops Prod., 166 (2021) 113473, doi: 10.1016/j.indcrop.2021.113473.
  19. M.A. Tony, Low-cost adsorbents for environmental pollution control: a concise systematic review from the prospective of principles, mechanism and their applications, J. Dispersion Sci. Technol., 43 (2022) 1612–1633.
  20. T. Wium-Andersen, A.H. Nielsen, T. Hvitved-Jacobsen, N.K. Kristensen, H. Brix, C. Arias, J. Vollertsen, Sorption media for stormwater treatment--a laboratory evaluation of five lowcost media for their ability to remove metals and phosphorus from artificial stormwater, Water Environ. Res., 84 (2012) 605–616.
  21. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
  22. B. Goswami, D. Mahanta, Polyaniline coated nickel oxide nanoparticles for the removal of phenolic compounds: equilibrium, kinetics and thermodynamic studies, Colloids Surf., A, 582 (2019) 123843, doi:10.1016/j.colsurfa.2019.123843.
  23. A.K.R. Kumar, K. Saikia, G. Neeraj, H. Cabana, V.V. Kumar, Remediation of bio-refinery wastewater containing organic and inorganic toxic pollutants by adsorption onto chitosan-based magnetic nanosorbent, Water Qual. Res. J., 55 (2020) 36–51.
  24. S.M. Moon, H. Min, S. Park, A. Zhexembekova, J.K. Suh, C.Y. Lee, Packaging vertically aligned carbon nanotubes into a heat-shrink tubing for efficient removal of phenolic pollutants, RSC Adv., 9 (2019) 22205–22210.
  25. F. Raposo, C. Ibelli-Bianco, Performance parameters for analytical method validation: controversies and discrepancies among numerous guidelines, TrAC, Trends Anal. Chem., 129 (2020) 115913, doi:10.1016/j.trac.2020.115913.
  26. S. Naik, C. Nazareth, S. Pereira, A novel HPLC cleaning validation and assay method for the simultaneous estimation of perindopril and amlodipine, Res. J. Pharm. Technol., 13 (2020) 5919–5923.
  27. H.A. Saudi, S.M. Salem, S.S. Mohammad, A.G. Mostafa, M.Y. Hassaan, Utilization of pure silica extracted from rice husk and FTIR structural analysis of the prepared glasses, Am. J. Phys. Appl., 3 (2015) 97–105.
  28. R.K. Sandhu, R. Siddique, Influence of rice husk ash (RHA) on the properties of self-compacting concrete: a review, Constr. Build. Mater., 153 (2017) 751–764.
  29. C. Păcurariu, G. Mihoc, A. Popa, S.G. Muntean, R. Ianoş, Adsorption of phenol and p-chlorophenol from aqueous solutions on poly(styrene-co-divinylbenzene) functionalized materials, Chem. Eng. J., 222 (2013) 218–227.
  30. B. Zeng, W. Xu, S.B. Khan, Y. Wang, J. Zhang, J. Yang, X. Su, Z. Lin, Preparation of sludge biochar rich in carboxyl/hydroxyl groups by quenching process and its excellent adsorption performance for Cr(VI), Chemosphere, 285 (2021) 131439, doi: 10.1016/j.chemosphere.2021.131439.
  31. M.I. Jalees, Synthesis and application of magnetized nanoparticles to remove lead from drinking water: Taguchi design of experiment, J. Water Sanit. Hyg. Dev., 10 (2020) 56–65.
  32. M.I. Jalees, M.U. Farooq, S. Basheer, S. Asghar, Removal of heavy metals from drinking water using Chikni Mitti (kaolinite): isotherm and kinetics, Arabian J. Sci. Eng., 44 (2019) 6351–6359.