References
- W. Vogel, Glass Chemistry, 2014.
- V. Kumar, Impact of glass industry effluent disposal on soil
characteristics in Haridwar region, India, J. Environ. Health
Sci., 2 (2016) 1–10.
- Z. He, J. Shentu, X. Yang, V. Baligar, T. Zhang, P. Stoffella,
Heavy metal contamination of soils: sources, indicators and
assessment, J. Environ. Ind., 9 (2015) 17–18.
- S. Rajeshkumar, Y. Liu, X. Zhang, B. Ravikumar, G. Bai,
X. Li, Studies on seasonal pollution of heavy metals in water,
sediment, fish and oyster from the Meiliang Bay of Taihu Lake
in China, Chemosphere, 191 (2018) 626–638.
- M. Rabiul Awual, An efficient composite material for selective
lead(II) monitoring and removal from wastewater, J. Environ.
Chem. Eng., 7 (2019) 103087, doi: 10.1016/j.jece.2019.103087.
- A.A. Alghamdi, A.-B. Al-Odayni, W.S. Saeed, A. Al-Kahtani,
F.A. Alharthi, T. Aouak, Efficient adsorption of lead(II) from
aqueous phase solutions using polypyrrole-based activated
carbon, Materials (Basel), 12 (2019) 2020, doi: 10.3390/ma12122020.
- E. Nassef, Y. Taweel, Removal of copper from wastewater
by cementation from simulated leach liquors, J. Chem. Eng.
Process Technol., 6 (2015) 1–6, doi: 10.4172/2157-7048.1000214.
- H. Hu, X. Li, P. Huang, Q. Zhang, W. Yuan, Efficient removal
of copper from wastewater by using mechanically activated
calcium carbonate, J. Environ. Manage., 203 (2017) 1–7.
- M. Maares, H. Haase, A guide to human zinc absorption:
general overview and recent advances of in vitro intestinal
models, Nutrients, 12 (2020) 762, doi: 10.3390/nu12030762.
- C. Jain, D. Singhal, M. Sharma, Adsorption of zinc on bed
sediment of River Hindon: adsorption models and kinetics,
J. Hazard. Mater., 114 (2004) 231–239.
- A. Abdolali, W. Guo, H. Ngo, S. Chen, N. Nguyen, K. Tung,
Typical lignocellulosic wastes and by-products for biosorption
process in water and wastewater treatment: a critical review,
Bioresour. Technol., 160 (2014) 57–66.
- L. Largitte, R. Pasquier, A review of the kinetics adsorption
models and their application to the adsorption of lead by an
activated carbon, Chem. Eng. Res. Des., 109 (2016) 495–504.
- R. Karthik, S. Meenakshi, Removal of Cr(VI) ions by adsorption
onto sodium alginate-polyaniline nanofibers, Int. J. Biol.
Macromol., 72 (2015) 711–717.
- P. Cazón, M. Vázquez, G. Velázquez, Composite films of
regenerate cellulose with chitosan and polyvinyl alcohol:
evaluation of water adsorption, mechanical and optical
properties, Int. J. Biol. Macromol., 117 (2018) 235–246.
- N. Delgado, A. Capparelli, A. Navarro, D. Marino,
Pharmaceutical emerging pollutants removal from water using
powdered activated carbon: study of kinetics and adsorption
equilibrium, J. Environ. Manage., 236 (2019) 301–308.
- K. Kumeta, I. Nagashima, S. Matsui, K. Mizoguchi, Crosslinking
of poly(vinyl alcohol) via bis(-hydroxyethyl) sulfone, Polym. J.,
36 (2004) 472–477.
- A. Alshameri, H. He, J. Zhu, Y. Xi, R. Zhu, L. Ma, Q. Tao,
Adsorption of ammonium by different natural clay minerals:
characterization, kinetics and adsorption isotherms, Appl. Clay
Sci., 159 (2017) 83–93.
- H. Moussout, H. Ahlafi, M. Aazza, H. Maghat, Critical of linear
and nonlinear equations of pseudo-first-order and pseudo-second-order kinetic models, Karbala Int. J. Mod. Sci., 4 (2018)
244–254.
- H. Isawi, Using zeolite/polyvinyl alcohol/sodium alginate
nanocomposite beads for removal of some heavy metals from
wastewater, Arabian J. Chem., 13 (2020) 5691–5716.
- S. De, N. Aluru, B. Johnson, W. Crone, D. Beebe, J. Moore,
Equilibrium swelling and kinetics of pH-responsive hydrogels:
models, experiments, and simulations, J. Microelectromech.
Syst., 11 (2002) 544–555.
- E. Bary, A. Fekri, Y. Soliman, A. Harmal, Characterisation and
swelling-deswelling properties of superabsorbent membranes
made of PVA and cellulose nanocrystals, Int. J. Environ. Stud.,
76 (2018) 118–135.
- G. Tan, H. Yuan, Y. Liu, D. Xiao, Removal of lead from aqueous
solution with native and chemically modified corncobs,
J. Hazard. Mater., 174 (2010) 740–745.
- Y. Xiaofeng, F. Sun, Z. Han, F. Han, J. He, M. Ou, J. Gu,
X. Xu, Graphene oxide encapsulated polyvinyl alcohol/sodium
alginate hydrogel microspheres for Cu(II) and U(VI) removal,
Ecotoxicol. Environ. Saf., 158 (2018) 309–318.
- E. Worch, Adsorption Technology in Water Treatment:
Fundamentals, Processes, and Modeling, Walter de Gruyter
GmbH and Co. KG, Berlin/Boston, Printed in Germany, 2012.
- F.A. Amaringo Villa, Determinación del punto de carga cero y
punto isoeléctrico de dos residuos agrícolas y su aplicación en
la remoción de colorantes, Rev. Invest. Agr. y Amb. 4 (2013).
- L. Li, F. Liu, X. Jing, P. Ling, A. Li, Displacement mechanism
of binary competitive adsorption for aqueous divalent metal
ions onto a novel IDA-chelating resin: isotherm and kinetic
modeling, Water Res., 45 (2011) 1177–1188.
- J. Febrianto, A.N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati,
S. Ismadji, Equilibrium and kinetic studies in adsorption of
heavy metals using biosorbent: a summary of recent studies,
J. Hazard. Mater., 162 (2009) 616–645.
- M. Moyo, L. Chikazaza, B.C. Nyamunda, U. Guyo, Adsorption
batch studies on the removal of Pb(II) using maize tassel
based activated carbon, J. Chem., 2013 (2013) 508934,
doi: 10.1155/2013/508934.