References

  1. A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su, A.A. Keller, Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability, Chem. Eng. J., 286 (2016) 640–662.
  2. M. Falkenmark, Water resilience and human life support-global outlook for the next half century, Int. J. Water Resour. Dev., 36 (2020) 377–396.
  3. J. Alcamo, T. Henrish, T. Rösch, World Water in 2025. Global Modeling and Scenario Analysis for the World Commission on Water for the 21st Century, Kassel World Water Series Report 2. Centre for Environmental Systems Research, University of Kassel, Germany, 2017.
  4. H. Sadegh, R. Shahryari-Ghoshekandi, M. Kazemi, Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles, Int. Nano Lett., 4 (2014) 129–135.
  5. V.K. Gupta, I. Tyagi, H. Sadegh, R. Shahryari-Ghoshekandi, A.S.H. Makhlouf, B. Maazinejad, nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review, Sci. Technol. Dev,. 34 (2017) 195–214.
  6. S. Kiran, S. Adeel, S. Nosheen, A. Hassan, M. Usman, M.A. Rafique, Chapter 2 – Recent Trends in Textile Effluent Treatments: A Review, Shahid-ul-Islam, Ed., Advanced Materials for Wastewater Treatment, Wiley-Scrivener Publishing, United States, 2017, pp. 29–49, doi: 10.1002/9781119407805.ch2.
  7. S.A.S. Chatha, S. Kiran, T. Gulzar, S. Kamal, A. Ghaffar, M.N. Chatha, Comparative study on decolorisation and mineralisation of synthetic and real textile effluents using advanced oxidation processes, Oxid. Commun., 39 (2016) 1604–1614.
  8. S. Kiran, S. Nosheen, S. Abrar, F. Anjum, T. Gulzar, S. Naz, Chapter 8 – Advanced Approaches for Remediation of Textile Wastewater: A Comparative Study, Shahid ul-Islam, B.S. Butola, Eds., Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications, Wiley-Scrivener Publishing, United States, 2019,
    pp. 201–264, doi: 10.1002/9781119605843.ch8.
  9. A.B. Machado, G.Z.P. Rodrigues, L.R. Feksa, D.B. Berlese, J.G. Tundisi, Applications of nanotechnology in water treatment, Revista Conhecimento Online, 1 (2019) 3–15.
  10. Q. Manzoor, R. Nadeem, M. Iqbal, R. Saeed, T.M. Ansari, Organic acids pretreatment effect on Rosa bourbonia phytobiomass for removal of Pb(II) and Cu(II) from aqueous media, Bioresour. Technol., 43 (2013) 446–452.
  11. J. Rocher, D.A. Basterrechea, M. Fawzy, J. Lloret, M.Y. Omar, Sensors and Biosorption for Better Reuse of Wastewater, International Conference on Advanced Intelligent Systems for Sustainable Development, Springer, Cham, 2019, pp. 321–330.
  12. O.A.R. Calderón, O.M. Abdeldayem, A. Pugazhendhi, E.R. Rene, Current updates and perspectives of biosorption technology: an alternative for the removal of heavy metals from wastewater, Curr. Pollut. Rep., 6 (2020) 8–27.
  13. H. Wang, Y. Chu, C. Fang, F. Huang, Y. Song, X. Xue, Sorption of tetracycline on biochar derived from rice straw under different temperatures, PLoS One, 12 (2017) 1–14.
  14. G.Z. Anastopoulos, A.E. Kyzas, Agricultural peels for dye adsorption: a review of recent literature, J. Mol. Liq., 200 (2014) 381–389.
  15. H. Lu, J. Wang, M. Stoller, T. Wang, Y. Bao, H. Hao, An overview of nanomaterials for water and wastewater treatment, Adv. Mater. Sci. Eng., 2016 (2016) 4964828, doi: 10.1155/2016/4964828.
  16. S. Abbas, S. Nasreen, A. Haroon, M.A. Ashraf, Synthesis of silver and copper nanoparticles from plants and application as adsorbents for naphthalene decontamination, Saudi J. Biol. Sci., 27 (2020) 1016–1023.
  17. G. Dinda, D. Halder, C. Vazquez-Vazquez, M. Lopez-Quintela, Green synthesis of copper nanoparticles and their antibacterial property, J. Surf. Sci. Technol., 31 (2015) 117–122.
  18. D.Z. Husein, R. Hassanien, M.F. Al-Hakkani, Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples, Heliyon, 5 (2019) 23–39.
  19. G.C. Kisku, T. Markandeya, S.P. Shukla, D.S. Singh, R.C. Murthy, Characterization and adsorptive capacity of coal fly ash from aqueous solutions of disperse blue and disperse orange dyes, Environ. Earth Sci., 74 (2015) 1125–1135.
  20. N. Dhiman, T. Markandeya, A. Singh, N.K. Verma, N. Ajaria, S. Patnaik, Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles, J. Colloid Interface Sci., 493 (2018) 295–306.
  21. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innovation, 3 (2019) 275–290.
  22. A. Sinha, U.S. Patent No. 9,119,017, U.S. Patent and Trademark Office, Washington, DC, 2015.
  23. S. Kiran, S. Nosheen, S. Iqbal, S. Abrar, F. Jalal, T. Gulzar, A. Mukhtar, S. Maqsood, W. Ahmad, N. Naseer, Photocatalysis using titanium dioxide for treatment of textile wastewater containing disperse dyes, Chiang Mai J. Sci., 45 (2018) 2730–2739.
  24. R.G. Steel, O. Torrie, D.A. Dickey, Principles and Procedures of Statistics: A Biochemical Approach, 3rd ed., McGraw Hill, New York, USA, 1997.
  25. A.E. Greenberg, R.L. Trussell, L.S. Clesceri, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, D.C., 1985.
  26. N.N. Patil, S.R. Shukla, Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating, J. Water Process Eng., 7 (2015) 314–327.
  27. M. Bayat, V. Javanbakht, J. Esmaili, Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye, Int. J. Biol. Macromol., 116 (2018) 607–619.
  28. S. Kiran, T. Huma, F. Jalal, T. Farooq, A. Hameed, T. Gulzar, A. Bashir, M. Rahmat, R. Rahmat, M.A. Rafique, Lignin degrading system of Phanerochaete chrysosporium and its exploitation for degradation of synthetic dyes wastewater, Pol. J. Environ. Stud., 28 (2020) 1749–1757.
  29. R.D. Kale, P.B. Kane, Colour removal using nanoparticles, Text. Clothing Sustainability, 2 (2017),
    doi:10.1186/s40689-016-0015-4.
  30. M. Kiransan, A. Khataee, S. Karaca, M. Sheydaei, Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite, Spectrochim. Acta, Part A, 140 (2017) 465–473.
  31. B. Shahmoradi, A. Maleki, K. Byrappa, Removal of Disperse Orange 25 using in situ surface-modified
    iron-doped TiO2 nanoparticles, Desal. Water Treat., 53 (2015) 3615–3622.
  32. A. Ghaffar, S. Kiran, M.A. Rafique, S. Iqbal, S. Nosheen, Y. Hou, G. Afzal, M. Bashir, M. Aimun, Citrus paradisi fruit peel extract mediated green synthesis of copper nanoparticles for remediation of Disperse Yellow 125 dye, Desal. Water Treat., 212 (2021) 386–375.
  33. S. Kiran, M.A. Rafique, S. Iqbal, S. Nosheen, S. Naz, A. Rasheed, Synthesis of nickel nanoparticles using Citrullus colocynthis stem extract for remediation of Reactive Yellow 160 dye, Environ. Sci. Pollut. Res., 27 (2020) 32998–33007.
  34. A.A. Rajabi, Y. Yamini, M. Faraji, F. Nourmohammadian, Modified magnetite nanoparticles with cetyl-trimethyl ammonium bromide as superior adsorbent for rapid removal of the disperse dyes from wastewater of textile companies, Nanochem. Res., 1 (2016) 49–56.
  35. E.J. Mohammad, A.J. Lafta, S.H. Kahdim, Photocatalytic removal of reactive yellow 145 dye from simulated textile wastewaters over supported (Co, Ni)3O4/Al2O3 co-catalyst, Pol. J. Chem. Technol., 18 (2016) 1–9.
  36. S.L. Foster, K. Estoque, M. Voeck, N. Rentz, L.F. Greenlee, Removal of synthetic azo dye using bimetallic
    nickel-iron nanoparticles, J. Nanomater., 1 (2019) 1–12.
  37. B.C. da Silva, A. Zanutto, J.M. Pietrobelli, Biosorption of reactive yellow dye by malt bagasse, Adsorpt. Sci. Technol., 37 (2019) 236–259.
  38. A. Sharma, Z.M. Siddiqui, S. Dhar, P. Mehta, D. Pathania, Adsorptive removal of Congo red dye (CR) from aqueous solution by Cornulaca monacantha stem and biomass-based activated carbon: isotherm, kinetics and thermodynamics, Sep. Sci. Technol., 54 (2019) 916–929.
  39. R. Satar, Q. Husain, Phenol-mediated decolorization and removal of disperse dyes by bitter gourd (Momordica charantia) peroxidase, Environ. Technol., 30 (2009) 412–423.
  40. S. Yasmin, S. Nouren, H.N. Bhatti, D.N. Iqbal, S. Iftikhar, J. Majeed, R. Mustafa, N. Nisar, J. Nisra, A. Nazir,
    M. Iqbal, H. Rizvi, Green synthesis, characterization and photo-catalytic applications of silver nanoparticles using Diospyros lotus, Green Process. Synth., 9 (2020) 87–96.
  41. E.R.A. Ferraz, G.A.R. Oliveira, M.D. Grando, T.M. Lizier, M.V.B. Zanoni, D.P. Oliveira, Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples, J. Environ. Manage., 124 (2013) 108–114.
  42. T. Varadavenkatesan, R. Vinayagam, R. Selvaraj, Green synthesis and structural characterization of silver nanoparticles synthesized using the pod extract of Clitoria ternatea and its application towards dye degradation, Mater. Today: Proc., 23 (2020) 27–29.
  43. L. David, B. Moldovan, Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes, Nanomaterials (Basel), 10 (2020) 1–16, doi: 10.3390/nano10020202.
  44. D. Gola, N. Bhatt, M. Bajpai, A. Singh, A. Arya, N. Chauhan, S.K. Srivastava, P.K. Tyagi, Y. Agrawal, Silver nanoparticles for enhanced dye degradation, Curr. Res. Green Sustainable Chem., 4 (2021) 100132, doi:10.1016/j.crgsc.2021.100132.