References
- H. Ben Slama, A.C. Bouket, Z. Pourhassan, F.N. Alenezi,
A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova,
P. Golińska,
L. Belbahri, Diversity of synthetic dyes from textile industries,
discharge impacts and treatment methods, Appl. Sci., 11 (2021)
6255, doi: 10.3390/APP11146255.
- F.M. Drumond Chequer, G.A.R. de Oliveira, E.R. Anastácio
Ferraz, J. Carvalho Cardoso, M.V. Boldrin Zanoni, D.P. de
Oliveira, Textile Dyes: Dyeing Process and Environmental
Impact, M. Günay, Ed., Eco-Friendly Textile Dyeing and
Finishing, InTechOpen, 2013. Available at: https://doi.org/10.5772/
53659
- B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio,
Effects of textile dyes on health and the environment and
bioremediation potential of living organisms, Biotechnol. Res.
Innovation, 3 (2019) 275–290.
- C.C. de Jesus Azevedo, R. de Oliveira, P. Suares-Rocha,
D. Sousa-Moura, A.T. Li, C.K. Grisolia,
G. de Aragão Umbuzeiro,
C.C. Montagner, Auramine dyes induce toxic effects to aquatic
organisms from different trophic levels: an application of
predicted non-effect concentration (PNEC), Environ. Sci. Pollut.
Res., 28 (2021) 1866–1877.
- D.P. Dutta, R. Venugopalan, S. Chopade, Manipulating carbon
nanotubes for efficient removal of both cationic and anionic
dyes from wastewater, ChemistrySelect, 2 (2017) 3878–3888.
- D.P. Dutta, A. Mathur, J. Ramkumar, A.K. Tyagi, Sorption
of dyes and Cu(II) ions from wastewater by sonochemically
synthesized MnWO4 and MnMoO4 nanostructures, RSC Adv.,
4 (2014) 37027–37035.
- A. Singh, D.P. Dutta, J. Ramkumar, K. Bhattacharya, A.K. Tyagi,
M.H. Fulekar, Serendipitous discovery of super adsorbent
properties of sonochemically synthesized nano BaWO4, RSC
Adv., 3 (2013) 22580–22590.
- R.S. Jackson, In: R.S. Jackson, Wine Science: Principles and
Applications, Elsevier, London, 2020, pp. 573–723.
- F. Kallel, F. Chaari, F. Bouaziz, F. Bettaieb, R. Ghorbel,
S.E. Chaabouni, Sorption and desorption characteristics for the
removal of a toxic dye, methylene blue from aqueous solution
by a low cost agricultural by-product, J. Mol. Liq., 219 (2016)
279–288.
- Z. Yan, C. Yi, T. Liu, J. Yang, H. Ma, L. Sha, D. Guo,
H. Zhao, X. Zhang, W. Wang, Effect of lignin-containing
highly fibrillated cellulose on the adsorption behavior of an
organic dye, BioResources, 16 (2021) 6560–6576. Available at:
https://webcache.googleusercontent.com/search?q=cache:
Hp13NjGhMgMJ:https://ojs.cnr.ncsu.edu/index.php/BioRes/
article/view/BioRes_16_4_6560_Yan_Lignin_Fibrillated_
Cellulose+&cd=2&hl=pl&ct=clnk&gl=pl (Accessed March 31,
2022).
- S. Colmenares-Cruz, J.E. Sánchez, J. Valle-Mora, Agaricus
bisporus production on substrates pasteurized by self-heating,
AMB Express, 7 (2017) 135, doi: 10.1186/S13568-017-0438-6.
- J. Vetter, Chitin content of cultivated mushrooms Agaricus
bisporus, Pleurotus ostreatus and Lentinula edodes, Food Chem.,
102 (2007) 6–9.
- S. Saiqa, N.B. Haq, A.H. Muhammad, A.A. Muhammad,
Ata-ur-Rehman,
Studies on chemical composition and nutritive
evaluation of wild edible mushrooms, Iran. J. Chem. Chem.
Eng., 27 (2008) 151–154.
- R. Goyal, R.B. Grewal, R.K. Goyal, Nutritional attributes of
Agaricus bisporus and Pleurotus sajor caju mushrooms, Nutr.
Health, 18 (2006) 179–184.
- A. Hassainia, H. Satha, S. Boufi, Chitin from Agaricus bisporus:
extraction and characterization, Int. J. Biol. Macromol.,
117 (2018) 1334–1342.
- E.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez,
M.E. Zappi, Adsorption kinetic modeling using
pseudo-first-order
and pseudo-second-order rate laws: a review, Cleaner
Eng. Technol., 1 (2020) 100032, doi: 10.1016/J.CLET.2020.100032.
- F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle
diffusion model used in the description of adsorption kinetics,
Chem. Eng. J., 153 (2009) 1–8.
- M.A. Islam, M.A. Chowdhury, M.S.I. Mozumder, M.T. Uddin,
Langmuir adsorption kinetics in liquid media: interface
reaction model, ACS Omega, 6 (2021) 14481–14492.
- G. Yue, H. Wu, J. Yue, M. Li, C. Zeng, W. Liang, Adsorption
measurement and dual-site Langmuir model II: modeling
and prediction of carbon dioxide storage in coal seam, Energy
Explor. Exploit., 37 (2019) 1268–1285.
- N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and
interpretation of adsorption isotherms, J. Chem., 2017 (2017)
3039817, doi: 10.1155/2017/3039817.
- G. Bekiaris, D. Tagkouli, G. Koutrotsios, N. Kalogeropoulos,
G.I. Zervakis, Pleurotus mushrooms content in glucans and
ergosterol assessed by ATR-FTIR spectroscopy and multivariate
analysis, Foods, 9 (2020) 535, doi: 10.3390/FOODS9040535.
- W. Kukula-Koch, M. Grzybek, A. Strachecka, A. Jaworska,
A. Ludwiczuk, ATR-FTIR-based fingerprinting of some
Cucurbitaceae extracts: a preliminary study, Acta Soc. Bot. Pol.,
87 (2018), doi: 10.5586/asbp.3579.
- A.A. Sulieman, K.X. Zhu, W. Peng, H.A. Hassan,
M. Obadi, M.I. Ahmed, H.M. Zhou, Effect of Agaricus bisporus polysaccharide flour and inulin on the antioxidant and
structural properties of gluten-free breads, J. Food Meas.
Charact., 13 (2019) 1884–1897.
- D. Kumar, J. Pandey, P. Kumar, Synthesis and characterization
of modified chitosan via microwave route for novel antibacterial
application, Int. J. Biol. Macromol., 107 (2018) 1388–1394.
- E.M. Dahmane, M. Taourirte, N. Eladlani, M. Rhazi, Extraction
and characterization of chitin and chitosan from Parapenaeus
longirostris from Moroccan Local Sources, Int. J. Polym. Anal.
Charact., 19 (2014) 342–351.
- P. Szymczyk, U. Filipkowska, T. Jóźwiak, M. Kuczajowska-Zadrożna, Use of sawdust immobilised on chitosan for disposal
of dyes from water solutions, Prog. Chem. Appl. Chitin Deriv.,
22 (2017) 207–219, doi:10.15259/PCACD.22.21.
- T. Jóźwiak, U. Filipkowska, S. Brym, M. Zyśk, The use of
aminated cotton fibers as an unconventional sorbent to remove
anionic dyes from aqueous solutions, Cellulose, 27 (2020)
3957–3969.
- T. Jóźwiak, U. Filipkowska, P. Marciniak, Use of hen feathers
to remove Reactive Black 5 and Basic red 46 from aqueous
solutions, Desal. Water Treat., 232 (2021) 129–139.
- U. Filipkowska, T. Jόźwiak, P. Szymczyk, M. Kuczajowska-Zadrożna, The use of active carbon immobilised on chitosan
beads for RB5 and BV10 dye removal from aqueous solutions,
Prog. Chem. Appl. Chitin Deriv., 22 (2017) 14–26, doi: 10.15259/
PCACD.22.02.
- T. Jóźwiak, U. Filipkowska, J. Struk-Sokołowska,
K. Bryszewski, K. Trzciński, J. Kuźma, M. Ślimkowska, The
use of spent coffee grounds and spent green tea leaves for
the removal of cationic dyes from aqueous solutions, Sci.
Rep. 111, 11 (2021) 1–12.
- A. Kowalkowska, T. Jóźwiak, Utilization of pumpkin (Cucurbita
pepo) seed husks as a low-cost sorbent for removing anionic
and cationic dyes from aqueous solutions, Desal. Water Treat.,
171 (2019) 397–407.
- M. Hubbe, S. Azizian, S. Douven, Implications of apparent
pseudo-second-order adsorption kinetics onto cellulosic
materials: a review, BioResorces, 14 (2019) 7582–7626.
- Z. Chen, H. Deng, C. Chen, Y. Yang, H. Xu, Biosorption of
malachite green from aqueous solutions by Pleurotus ostreatus
using Taguchi method, J. Environ. Health Sci. Eng., 12 (2014) 63,
doi: 10.1186/2052-336X-12-63.
- U. Filipkowska, T. Jóźwiak, P. Bugajska, M. Kuczajowska-Zadrożna, The influence of chitin amination on the effectiveness
of RB5 and RY84 dye sorption, Prog. Chem. Appl. Chitin Deriv.,
23 (2018) 66–75.
- K. Vijayaraghavan, Y.S. Yun, Biosorption of C.I. Reactive
Black 5 from aqueous solution using acid-treated biomass of
brown seaweed Laminaria sp., Dyes Pigm., 3 (2008) 726–732.
- G.M. Nabil, N.M. El-Mallah, M.E. Mahmoud, Enhanced
decolorization of Reactive Black 5 dye by active carbon sorbentim-mobilized-cationic surfactant (AC-CS), J. Ind. Eng. Chem.,
20 (2014) 994–1002.
- Z. Eren, F.N. Acar, Adsorption of Reactive Black 5 from an
aqueous solution: equilibrium and kinetic studies, Desalination,
194 (2006) 1–10.
- Ö. Tunç, H. Tanaci, Z. Aksu, Potential use of cotton plant wastes
for the removal of Remazol black B reactive dye, J. Hazard.
Mater., 163 (2009) 187–198.
- Y. Hamzeh, A. Ashori, E. Azadeh, A. Abdulkhani, Removal of
Acid orange 7 and Remazol black 5 reactive dyes from aqueous
solutions using a novel biosorbent, Mater. Sci. Eng., C, 32 (2012)
1394–1400.
- W. Zhang, H. Yan, H. Li, Z. Jiang, L. Dong, X. Kan, H. Yang,
A. Li, R. Cheng, Removal of dyes from aqueous solutions by
straw based adsorbents: batch and column studies, Chem.
Eng. J., 168 (2011) 1120–1127.
- D. Uçar, B. Armağan, The removal of Reactive Black 5 from
aqueous solutions by cotton seed shell, Water Environ. Res.,
84 (2012) 323–327.
- T. Jóźwiak, U. Filipkowska, J. Rodziewicz, A. Mielcarek,
D. Owczarkowska, Application of compost as a cheap sorbent
for dyes removal from aqueous solutions | Zastosowanie
kompostu jako taniego sorbentu do usuwania barwnik?w z
roztwor?w wodnych, Rocz. Ochr. Sr., 15 (2013).
- P. Pengthamkeerati, T. Satapanajaru, N. Chatsatapattayakul,
P. Chairattanamanokorn, N. Sananwai, Alkaline treatment
of biomass fly ash for reactive dye removal from aqueous
solution, Desalination, 261 (2010) 34–40.
- M.M. Felista, W.C. Wanyonyi, G. Ongera, Adsorption of anionic
dye (Reactive Black 5) using macadamia seed husks: kinetics
and equilibrium studies, Sci. Afr., 7 (2020) e00283, doi: 10.1016/J.SCIAF.2020.E00283.
- J.F. Osma, V. Saravia, J.L. Toca-Herrera, S.R. Couto, Sunflower
seed shells: a novel and effective low-cost adsorbent for the
removal of the diazo dye Reactive Black 5 from aqueous
solutions, J. Hazard. Mater., 147 (2007) 900–905.
- T. Józwiak, U. Filipkowska, P. Bugajska, T. Kalkowski, The
use of coconut shells for the removal of dyes from aqueous
solutions, J. Ecol. Eng., 19 (2018) 129–135.
- M. Mohammadi, A.J. Hassani, A.R. Mohamed, G.D. Najafpour,
Removal of rhodamine b from aqueous solution using palm
shell-based activated carbon: adsorption and kinetic studies,
J. Chem. Eng. Data, 55 (2010) 5777–5785.
- K. Porkodi, K. Vasanth Kumar, Equilibrium, kinetics and
mechanism modeling and simulation of basic and acid dyes
sorption onto jute fiber carbon: Eosin yellow, malachite green
and crystal violet single component systems, J. Hazard. Mater.,
143 (2007) 311–327.
- M.S. Mahmoud, Decolorization of certain reactive dye from
aqueous solution using Baker’s Yeast (Saccharomyces cerevisiae)
strain, HBRC J., 12 (2016) 88–98.
- C. Namasivayam, N. Kanchana, R.T. Yamuna, Waste banana
pith as adsorbent for the removal of rhodamine-B from aqueous
solutions, Waste Manage., 13 (1993) 89–95.
- S. Kaur, T.P.S. Walia, I. Kansal, Removal of Rhodamine-B
by adsorption on walnut shell charcoal, J. Surf. Sci. Technol.,
24 (2008) 179–193.
- M.V. Sureshkumar, C. Namasivayam, Adsorption behavior of
Direct Red 12B and Rhodamine B from water onto surfactant-modified
coconut coir pith, Colloids Surf., A, 317 (2008) 277–283.
- H. Parab, M. Sudersanan, N. Shenoy, T. Pathare, B. Vaze,
Use of agro-industrial wastes for removal of basic dyes from
aqueous solutions, Clean – Soil, Air, Water, 37 (2009) 963–969.
- T. Jóźwiak, U. Filipkowska, P. Zajko, Use of citrus fruit peels
(grapefruit, mandarin, orange, and lemon) as sorbents for
the removal of Basic Violet 10 and Basic red 46 from aqueous
solutions, Desal. Water Treat., 163 (2019) 385–397.
- M. Zamouche, O. Hamdaoui, Sorption of Rhodamine B by
cedar cone: effect of pH and ionic strength, Energy Procedia,
18 (2012) 1228–1239.
- T.A. Khan, S. Sharma, I. Ali, Adsorption of Rhodamine B dye
from aqueous solution onto acid activated mango (Magnifera
indica) leaf powder: equilibrium, kinetic and thermodynamic
studies, J. Toxicol. Environ. Health Sci., 3 (2011) 286–297.
- K. Shen, M.A. Gondal, Removal of hazardous Rhodamine
dye from water by adsorption onto exhausted coffee ground,
J. Saudi Chem. Soc., 21 (2017) S120–S127.
- S. Papić, N. Koprivanac, A. Lončarić Božić, A. Meteš, Removal
of some reactive dyes from synthetic wastewater by combined
Al(III) coagulation/carbon adsorption process, Dyes Pigm.,
62 (2004) 291–298.