References

  1. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  2. A. Taghizadeh, M. Taghizadeh, M. Jouyandeh, M.K. Yazdi, P. Zarrintaj, M.R. Saeb, E.C. Lima, V.K. Gupta, Conductive polymers in water treatment: a review, J. Mol. Liq., 312 (2020) 113447, doi:10.1016/j.molliq.2020.113447.
  3. M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity, Sci. Adv., 2 (2016) 1–6.
  4. L.D. Tijing, Y.C. Woo, J.-S. Choi, S. Lee, S.-H. Kim, H.K. Shon, Fouling and its control in membrane distillation—
    a review, J. Membr. Sci., 475 (2015) 215–244.
  5. L.A. Hoover, W.A. Phillip, A. Tiraferri, N.Y. Yip, M. Elimelech, Forward with osmosis: emerging applications for greater sustainability, Environ. Sci. Technol., 45 (2011) 9824–9830.
  6. R. Xiong, C. Wei, Current status and technology trends of zero liquid discharge at coal chemical industry in China, J. Water Process Eng., 19 (2017) 346–351.
  7. G.P. Thiel, E.W. Tow, L.D. Banchik, H.W. Chung, J.H. Lienhard, Energy consumption in desalinating produced water from shale oil and gas extraction, Desalination, 366 (2015) 94–112.
  8. A. Carati, M. Marino, D. Brogioli, Thermodynamic study of a distiller-electrochemical cell system for energy production from low temperature heat sources, Energy, 93 (2015) 984–993.
  9. D. von Eiff, P.W. Wong, Y. Gao, S. Jeong, A.K. An, Technical and economic analysis of an advanced multi-stage flash crystallizer for the treatment of concentrated brine, Desalination, 503 (2021) 114925, doi:10.1016/j.desal.2020.114925.
  10. A.J. Toth, Modelling and optimisation of multi-stage flash distillation and reverse osmosis for desalination of saline process wastewater sources, Membranes (Basel), 10 (2020) 1–18.
  11. M.M. Alhazmy, Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling, Energy, 76 (2014) 1029–1035.
  12. A.M.K. El-Ghonemy, Performance test of a sea water multistage flash distillation plant: case study, Alex. Eng. J., 57 (2018) 2401–2413.
  13. M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4 (2011) 1946–1971.
  14. A. Anand, B. Unnikrishnan, J.Y. Mao, H.J. Lin, C.C. Huang, Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–a review, Desalination, 429 (2018) 119–133.
  15. Z. Zhang, F. Zhang, Z. Liu, G. Cheng, X. Wang, J. Ding, Molecular dynamics study on the reverse osmosis using multilayer porous graphene membranes, Nanomaterials (Basel), 8 (2018) 1–13.
  16. Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater., 23 (2013) 3693–3700.
  17. S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol., 10 (2015) 459–464.
  18. J.R. Werber, C.O. Osuji, M. Elimelech, Materials for nextgeneration desalination and water purification membranes, Nat. Rev. Mater., 1 (2016) 1–16.
  19. M. Xie, H.K. Shon, S.R. Gray, M. Elimelech, Membrane-based processes for wastewater nutrient recovery: technology, challenges, and future direction, Water Res., 89 (2016) 210–221.
  20. K. Choi, A. Droudian, R.M. Wyss, K.P. Schlichting, H.G. Park, Multifunctional wafer-scale graphene membranes for fast ultrafiltration and high permeation gas separation, Sci. Adv., 4 (2018) 1–11.
  21. J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh,
    I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol., 12 (2017) 546–550.
  22. Y. Yang, X. Yang, L. Liang, Y. Gao, H. Cheng, X. Li, M. Zou, R. Ma, Q. Yuan, X. Duan, Large-area graphene-nanomesh/ carbon-nanotube hybrid membranes for ionic and molecular nanofiltration, Science, 364 (2019) 1057–1062.
  23. A. Esfandiar, B. Radha, F.C. Wang, Q. Yang, S. Hu, S. Garaj, R.R. Nair, A.K. Geim, K. Gopinadhan, Size effect in ion transport through angstrom-scale slits, Science, 358 (2017) 1–3.
  24. K. Celebi, J. Buchheim, R.M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J.I. Kye, C. Lee, H.G. Park, Ultimate permeation across atomically thin porous graphene, Science, 344 (2014) 289–292.
  25. R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nat. Commun., 7 (2016) 11408, doi: 10.1038/ncomms11408.
  26. C.T. Nguyen, A. Beskok, Charged nanoporous graphene membranes for water desalination, Phys. Chem. Chem. Phys., 21 (2019) 9483–9494.
  27. J.A.L. Willcox, H.J. Kim, Molecular dynamics study of water flow across multiple layers of pristine, oxidized, and mixed regions of graphene oxide: effect of graphene oxide layer-tolayer distance, J. Phys. Chem. C, 121 (2017) 23659–23668.
  28. W. Li, L. Zhang, X. Zhang, M. Zhang, T. Liu, S. Chen, Atomic insight into water and ion transport in 2D interlayer nanochannels of graphene oxide membranes: implication for desalination, J. Membr. Sci., 596 (2020) 1–8.
  29. K. Meidani, Z. Cao, A. Barati Farimani, Titanium carbide MXene for water desalination: a molecular dynamics study, ACS Appl. Nano Mater., 4 (2021) 6145–6151.
  30. M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore, Nat. Commun., 6 (2015) 8616, doi: 10.1038/ncomms9616.
  31. S. Chen, J. Ding, Q. Li, D. He, Y. Liu, L. Wang, Q. Lyu, M. Wang, Control one-dimensional length of rectangular pore on graphene membrane for better desalination performance, Nanotechnology, 33 (2022) 1–11.
  32. Z. Li, Q. Han, Y. Qiu, Field-enhanced water transport in subnanometer graphene nanopores, Desalination, 528 (2022) 115610, doi: 10.1016/j.desal.2022.115610.
  33. V. Mortazavi, A. Moosavi, A. Nouri-Borujerdi, Enhancing water desalination in graphene-based membranes via an oscillating electric field, Desalination, 495 (2020) 114672, doi: 10.1016/j.desal.2020.114672.
  34. T.A. Beu, Molecular dynamics simulations of ion transport through carbon nanotubes. I. Influence of geometry, ion specificity, and many-body interactions, J. Chem. Phys., 132 (2010) 1–16.
  35. H.T. Kieu, B. Liu, K. Zhou, A.W.-K. Law, Pressure-driven water permeation through multilayer graphene nanosheets, Phys. Status Solidi B, 254 (2017) 1–10.
  36. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117 (1995) 1–19.
  37. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81 (1984) 511–519.
  38. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A, 31 (1985) 1695–1697.
  39. V. Mortazavi, A. Moosavi, A. Nouri-Borujerdi, Enhancing water desalination in graphene-based membranes via an oscillating electric field, Desalination, 495 (2020) 1–11.
  40. J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys., 23 (1977) 327–341.
  41. C.L. Kong, Combining rules for intermolecular potential parameters. II. Rules for the Lennard–Jones (12–6) potential and the Morse potential, J. Chem. Phys., 59 (1973) 2464–2467.
  42. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, CRC Press, Boca Raton, 1988.
  43. S.M. Ghodsi, S. Sharifi‐Asl, P. Rehak, P. Král, C.M. Megaridis, R. Shahbazian-Yassar, T. Shokuhfar, Assessment of pressure and density of confined water in graphene liquid cells, Adv. Mater. Interfaces, 7 (2020) 1–10.
  44. S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee, Solvent structure, dynamics, and ion mobility in aqueous solutions at 25°C, J. Phys. Chem. B, 102 (1998) 4193–4204.
  45. S. Sahu, M. Zwolak, Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores, Nanoscale, 9 (2017) 11424–11428.
  46. S.R. Osipi, A.R. Secchi, C.P. Borges, Cost assessment and retrotechno-economic analysis of desalination technologies in onshore produced water treatment, Desalination, 430 (2018) 107–119.
  47. Q.J. Wei, R.K. McGovern, J.H. Lienhard V, Saving energy with an optimized two-stage reverse osmosis system, Environ. Sci. Water Res. Technol., 3 (2017) 659–670.
  48. L.A.N. El-Din, A. El-Gendi, N. Ismail, K.A. Abed, A.I. Ahmed, Evaluation of cellulose acetate membrane with carbon nanotubes additives, J. Ind. Eng. Chem., 26 (2015) 259–264.
  49. M.Y. Ashfaq, M.A. Al-Ghouti, N. Zouari, Functionalization of reverse osmosis membrane with graphene oxide to reduce both membrane scaling and biofouling, Carbon, 166 (2020) 374–387.
  50. S. Li, B. Gao, Y. Wang, B. Jin, Q. Yue, Z. Wang, Antibacterial thin film nanocomposite reverse osmosis membrane by doping silver phosphate loaded graphene oxide quantum dots in polyamide layer, Desalination, 464 (2019) 94–104.
  51. Y. Liu, Z. Cheng, M. Song, L. Jiang, G. Fu, L. Liu, J. Li, Molecular dynamics simulation-directed rational design of nanoporous graphitic carbon nitride membranes for water desalination, J. Membr. Sci., 620 (2021) 118869, doi: 10.1016/j.memsci.2020.118869.
  52. T. Liu, J. Lyv, Y. Xu, C. Zheng, Y. Liu, R. Fu, L. Liang, J. Wu, Z. Zhang, Graphene-based woven filter membrane with excellent strength and efficiency for water desalination, Desalination, 533 (2022) 115775, doi:10.1016/j.desal.2022. 115775.
  53. Q. Shi, H. Gao, Y. Zhang, Z. Meng, D. Rao, J. Su, Y. Liu, Y. Wang, R. Lu, Bilayer graphene with ripples for reverse osmosis desalination, Carbon, 136 (2018) 21–27.
  54. E.Y.M. Ang, T.Y. Ng, J. Yeo, Z. Liu, K.R. Geethalakshmi, Freestanding graphene slit membrane for enhanced desalination, Carbon, 110 (2016) 350–355.
  55. X. Jia, J. Klemeš, P. Varbanov, S. Wan Alwi, Analyzing the energy consumption, GHG emission, and cost of seawater desalination in China, Energies, 12 (2019) 1–16.
  56. D. Zarzo, D. Prats, Desalination and energy consumption. What can we expect in the near future?, Desalination, 427 (2018) 1–9.
  57. K. Park, J. Kim, D.R. Yang, S. Hong, Towards a low-energy seawater reverse osmosis desalination plant: a review and theoretical analysis for future directions, J. Membr. Sci., 595 (2020) 1–47.
  58. F. Leon, A. Ramos, S.O. Perez-Baez, Optimization of energy efficiency, operation costs, carbon footprint and ecological footprint with reverse osmosis membranes in seawater desalination plants, Membranes (Basel), 11 (2021) 1–18.
  59. P. Daraei, S.S. Madaeni, N. Ghaemi, M.A. Khadivi, B. Astinchap, R. Moradian, Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube, J. Membr. Sci., 444 (2013) 184–191.
  60. M. Dahanayaka, B. Liu, N. Srikanth, K. Zhou, Ionised graphene oxide membranes for seawater desalination, Desalination, 496 (2020) 114637, doi: 10.1016/j.desal.2020.114637.
  61. M. Ali Abdol, S. Sadeghzadeh, M. Jalaly, M. Mahdi Khatibi, On the desalination performance of multi-layer graphene membranes: a molecular dynamics study, Comput. Mater. Sci., 191 (2021) 110335, doi:10.1016/j.commatsci.2021.110335.
  62. Y. Zhang, T. Fang, Q. Hou, Z. Li, Y. Yan, Water desalination of a new three-dimensional covalent organic framework: a molecular dynamics simulation study, Phys. Chem. Chem. Phys., 22 (2020) 16978–16984.
  63. M. Wang, D. Luo, B. Wang, R.S. Ruoff, Synthesis of large-area single-crystal graphene, Trends Chem., 3 (2021) 15–33.
  64. M. Sarai Atab, A.J. Smallbone, A.P. Roskilly, An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation, Desalination, 397 (2016) 174–184.
  65. J.L. Pearson, P.R. Michael, N. Ghaffour, T.M. Missimer, Economics and energy consumption of brackish water reverse osmosis desalination: innovations and impacts of feedwater quality, Membranes (Basel), 11 (2021) 1–21.
  66. N. Mir, Y. Bicer, Integration of electrodialysis with renewable energy sources for sustainable freshwater production: a review, J. Environ. Manage., 289 (2021) 112496, doi: 10.1016/j.jenvman.2021.112496.
  67. Z. Zhang, A.A. Atia, J.A. Andrés-Mañas, G. Zaragoza, V. Fthenakis, Comparative techno-economic assessment of osmotically-assisted reverse osmosis and batch-operated vacuum-air-gap membrane distillation for
    high-salinity water desalination, Desalination, 532 (2022) 115737, doi: 10.1016/j.desal.2022.115737.
  68. E. Ali, J. Orfi, H. AlAnsary, S. Soukane, H. Elcik, A. Alpatova, N. Ghaffour, Cost analysis of multiple effect evaporation and membrane distillation hybrid desalination system, Desalination, 517 (2021) 115258, doi:10.1016/j.desal.2021.115258.
  69. D. von Eiff, P.W. Wong, Y. Gao, S. Jeong, A.K. An, Technical and economic analysis of an advanced multi-stage flash crystallizer for the treatment of concentrated brine, Desalination, 503 (2021) 114925, doi:10.1016/j.desal.2020.114925.
  70. I. Baniasad Askari, M. Ameri, A techno-economic review of multi effect desalination systems integrated with different solar thermal sources, Appl. Therm. Eng., 185 (2021) 116323, doi:10.1016/j.applthermaleng.2020.116323.
  71. M.A. Al-Obaidi, G. Filippini, F. Manenti, I.M. Mujtaba, Cost evaluation and optimisation of hybrid multi effect distillation and reverse osmosis system for seawater desalination, Desalination, 456 (2019) 136–149.
  72. G.M. de Costa, C.M. Hussain, Ethical, legal, social and economics issues of graphene, Compr. Anal. Chem., 91 (2020) 263–279.