References

  1. E. Savastru, D. Bulgariu, C.-I. Zamfir, L. Bulgariu, Application of Saccharomyces cerevisiae in the biosorption of Co(II), Zn(II) and Cu(II) ions from aqueous media, Water, 14 (2022) 976, doi: 10.3390/w14060976.
  2. L. Bulgariu, D.I. Ferţu, I.G. Cara, M. Gavrilescu, Efficacy of alkaline-treated soy waste biomass for the removal of heavymetal ions and opportunities for their recovery, Materials (Basel), 14 (2021) 7413, doi:10.3390/ma14237413.
  3. E. Iakovleva, M. Sillanpää, The use of low-cost adsorbents for wastewater purification in mining industries, Environ. Sci. Pollut. Res., 20 (2013) 7878–7899.
  4. F. Akbal, S. Camcı, Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 269 (2011) 214–222.
  5. S.E. Abdelkader, A.S. El-Gendy, S. El-Haggar, Removal of trivalent chromium from tannery wastewater using solid wastes, Innovation Infrastruct. Solutions, 6 (2021) 47, doi: 10.1007/s41062-020-00414-8.
  6. M.R. Awual, M. Ismael, T. Yaita, Efficient detection and extraction of cobalt(II) from lithium ion batteries and wastewater by novel composite adsorbent, Sens. Actuators, B, 191 (2014) 9–18.
  7. M.A. Gacem, A. Telli, A. Ould El Hadj Khelil, Chapter 15 – Nanomaterials for Detection, Degradation, and Adsorption of Pesticides From Water and Wastewater, K.A. Abd- Elsalam, M. Zahid, Eds., Aquananotechnology: Applications of Nanomaterials for Water Purification: Micro and Nano Technologies, Elsevier, Radarweg 29, P.O. Box 211, 1000 AE Amsterdam, Netherlands, 2021, pp. 315–336. Available at: https://doi.org/10.1016/B978-0-12-821141-0.00003-3
  8. Q. Chu, T. Lyu, L. Xue, L. Yang, Y. Feng, Z. Sha, B. Yue, R.J.G. Mortimer, M. Cooper, G. Pan, Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to crop-soil systems as slow-release fertilizers, J. Cleaner Prod., 283 (2021) 124627, doi: 10.1016/j.jclepro.2020.124627.
  9. M. Al-Shannag, W. Lafi, K. Bani-Melhem, F. Gharagheer, O. Dhaimat, Reduction of COD and TSS from paper industries wastewater using electro-coagulation and chemical coagulation, Sep. Sci. Technol., 47 (2012) 700–708.
  10. F.E. Ahmed, B.S. Lalia, R. Hashaikeh, N. Hilal, Alternative heating techniques in membrane distillation: a review, Desalination, 496 (2020) 114713, doi: 10.1016/j.desal.2020.114713.
  11. Q. Dai, L. Xie, L. Ma, J. Yang, X. Yang, N. Ren, G. Tian, Z. Guo, P. Ning, Effects of flocculant-modified phosphogypsum on sludge treatment: investigation of the operating parameters, variations of the chemical groups, and heavy metals in the sludge, Environ. Sci. Water Res. Technol., 7 (2021) 184–196.
  12. Z. Yang, J.-R. Degorce-Dumas, H. Yang, E. Guibal, A. Li, R. Cheng, Flocculation of Escherichia coli using a quaternary ammonium salt grafted carboxymethyl chitosan flocculant, Environ. Sci. Technol., 48 (2014) 6867–6873.
  13. A.M. Elgarahy, K.Z. Elwakeel, A. Akhdhar, M.F. Hamza, Recent advances in greenly synthesized nanoengineered materials for water/wastewater remediation: an overview, Nanotechnol. Environ. Eng., 6 (2021) 9, doi:10.1007/s41204-021-00104-5.
  14. K.Z. Elwakeel, A.M. Elgarahy, Z.A. Khan, M.S. Almughamisi, A.S. Al-Bogami, Perspectives regarding metal/mineralincorporating materials for water purification: with special focus on Cr(VI) removal, Mater. Adv., 1 (2020) 1546–1574.
  15. A.A. Atia, A.M. Donia, K.Z. Elwakeel, Selective separation of mercury(II) using a synthetic resin containing amine and mercaptan as chelating groups, React. Funct. Polym., 65 (2005) 267–275.
  16. K.Z. Elwakeel, M.F. Hamza, E. Guibal, Effect of agitation mode (mechanical, ultrasound and microwave) on uranium sorption using amine- and dithizone-functionalized magnetic chitosan hybrid materials, Chem. Eng. J., 411 (2021) 128553, doi: 10.1016/j.cej.2021.128553.
  17. A.-R. Lucaci, D. Bulgariu, L. Bulgariu, In-situ functionalization of iron oxide particles with alginate: a promising biosorbent for retention of metal ions, Polymers, 13 (2021) 3554, doi: 10.3390/polym13203554.
  18. I.S. Bădescu, D. Bulgariu, I. Ahmad, L. Bulgariu, Valorisation possibilities of exhausted biosorbents loaded with metal ions – a review, J. Environ. Manage., 224 (2018) 288–297.
  19. K.Z. Elwakeel, G.O. El-Sayed, S.M. Abo El-Nassr, Removal of ferrous and manganous from water by activated carbon obtaied from sugarcane bagasse, Desal. Water Treat., 55 (2015) 471–483.
  20. K.Z. Elwakeel, A.M. Elgarahy, E. Guibal, A biogenic tunable sorbent produced from upcycling of aquatic biota-based materials functionalized with methylene blue dye for the removal of chromium(VI) ions, J. Environ. Chem. Eng., 9 (2021) 104767, doi: 10.1016/j.jece.2020.104767.
  21. W. Zhao, Y. Tian, X. Chu, L. Cui, H. Zhang, M. Li, P. Zhao, Preparation and characteristics of a magnetic carbon nanotube adsorbent: its efficient adsorption and recoverable performances, Sep. Purif. Technol., 257 (2021) 117917, doi: 10.1016/j.seppur.2020.117917.
  22. E.A. Abdelrahman, Y.G. Abou El-Reash, H.M. Youssef, Y.H. Kotp, R.M. Hegazey, Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co(II), Cu(II), and Zn(II) ions from aqueous media, J. Hazard. Mater., 401 (2021) 123813, doi: 10.1016/j.jhazmat.2020.123813.
  23. S.A. El-Korashy, K.Z. Elwakeel, A.A. El-Hafeiz, Fabrication of bentonite/thiourea-formaldehyde composite material for Pb(II), Mn(VII) and Cr(VI) sorption: a combined basic study and industrial application, J. Cleaner Prod., 137 (2016) 40–50.
  24. I. Ahmad, U. Farwa, Z.U.H. Khan, M. Imran, M.S. Khalid, B. Zhu, A. Rasool, G.M. Shah, M. Tahir, M. Ahmed,
    S. Rezapour, L. Bulgariu, Biosorption and health risk assessment of arsenic contaminated water through cotton stalk biochar, Surf. Interfaces, 29 (2022) 101806, doi: 10.1016/j.surfin.2022.101806.
  25. Y. Wei, K.A.M. Salih, K. Rabie, K.Z. Elwakeel, Y.E. Zayed, M.F. Hamza, E. Guibal, Development of phosphorylfunctionalized algal-PEI beads for the sorption of Nd(III) and Mo(VI) from aqueous solutions – application for rare earth recovery from acid leachates, Chem. Eng. J., 412 (2021) 127399, doi:10.1016/j.cej.2020.127399.
  26. A.R. Lucaci, D. Bulgariu, I. Ahmad, L. Bulgariu, Equilibrium and kinetics studies of metal ions biosorption on alginate extracted from marine red algae biomass (Callithamnion corymbosum sp.), Polymers, 12 (2020) 1888, doi: 10.3390/ polym12091888.
  27. S.A. Qamar, M. Qamar, A. Basharat, M. Bilal, H. Cheng, H.M.N. Iqbal, Alginate-based nano-adsorbent materials – bioinspired solution to mitigate hazardous environmental pollutants, Chemosphere, 288 (2022) 132618, doi: 10.1016/j. chemosphere.2021.132618.
  28. J. Deng, X. Li, Y. Liu, G. Zeng, J. Liang, B. Song, X. Wei, Alginatemodified biochar derived from
    Ca(II)-impregnated biomass: excellent anti-interference ability for Pb(II) removal, Ecotoxicol. Environ. Saf., 165 (2018) 211–218.
  29. W. Zhang, J. Ou, B. Wang, H. Wang, Q. He, J. Song, H. Zhang, M. Tang, L. Zhou, Y. Gao, S. Sun, Efficient heavy metal removal from water by alginate-based porous nanocomposite hydrogels: the enhanced removal mechanism and influencing factor insight, J. Hazard. Mater., 418 (2021) 126358, doi:10.1016/j.jhazmat.2021.126358.
  30. M. Hassan, R. Naidu, J. Du, F. Qi, M.A. Ahsan, Y. Liu, Magnetic responsive mesoporous alginate/β-cyclodextrin polymer beads enhance selectivity and adsorption of heavy metal ions, Int. J. Biol. Macromol., 207 (2022) 826–840.
  31. J. Venkatesan, I. Bhatnagar, P. Manivasagan, K.-H. Kang, S.-K. Kim, Alginate composites for bone tissue engineering: a review, Int. J. Biol. Macromol., 72 (2015) 269–281.
  32. L. Agüero, D. Zaldivar-Silva, L. Peña, M.L. Dias, Alginate microparticles as oral colon drug delivery device:
    a review, Carbohydr. Polym., 168 (2017) 32–43.
  33. A. Haug, B. Larsen, A Study on the Constitution of Alginic Acid by Partial Acid Hydrolysis, E.G. Young,
    J.L. McLachlan, Eds., Proceedings of the Fifth International Seaweed Symposium, Halifax, August 25–28, 1965, Pergamon, 1966, pp. 271–277. Available at: https://doi.org/10.1016/B978-0-08-011841-3.50043-4
  34. M. Yadav, D.K. Mishra, A. Sand, K. Behari, Modification of alginate through the grafting of 2-acrylamidoglycolic acid and study of physicochemical properties in terms of swelling capacity, metal ion sorption, flocculation and biodegradability, Carbohydr. Polym., 84 (2011) 83–89.
  35. A. Benettayeb, E. Guibal, A. Bhatnagar, A. Morsli, R. Kessas, Effective removal of nickel(II) and zinc(II) in mono-compound and binary systems from aqueous solutions by application of alginate-based materials, Int. J. Environ. Anal. Chem., (2021) 1–22, doi: 10.1080/03067319.2021.1887164.
  36. Y. Mo, S. Wang, T. Vincent, J. Desbrieres, C. Faur, E. Guibal, New highly-percolating alginate-PEI membranes for efficient recovery of chromium from aqueous solutions, Carbohydr. Polym., 225 (2019) 115177, doi:10.1016/j.carbpol.2019.115177.
  37. Y. Zhang, Y. Mo, T. Vincent, C. Faur, E. Guibal, Boosted Cr(VI) sorption coupled reduction from aqueous solution using quaternized algal/alginate@PEI beads, Chemosphere, 281 (2021) 130844, doi:10.1016/j.chemosphere.2021.130844.
  38. H. Demey, T. Vincent, E. Guibal, A novel algal-based sorbent for heavy metal removal, Chem. Eng. J., 332 (2018) 582–595.
  39. A. Nussinovitch, O. Dagan, Hydrocolloid liquid-core capsules for the removal of heavy-metal cations from water, J. Hazard. Mater., 299 (2015) 122–131.
  40. X. Tao, S. Wang, Z. Li, S. Zhou, Green synthesis of network nanostructured calcium alginate hydrogel and its removal performance of Cd2+ and Cu2+ ions, Mater. Chem. Phys., 258 (2021) 123931, doi:10.1016/j.matchemphys.2020.123931.
  41. S. Cataldo, G. Cavallaro, A. Gianguzza, G. Lazzara, A. Pettignano, D. Piazzese, I. Villaescusa, Kinetic and equilibrium study for cadmium and copper removal from aqueous solutions by sorption onto mixed alginate/pectin gel beads, J. Environ. Chem. Eng., 1 (2013) 1252–1260.
  42. Y. Mo, Y. Zhang, T. Vincent, C. Faur, E. Guibal, Investigation of mercury(II) and copper(II) sorption in single and binary systems by alginate/polyethylenimine membranes, Carbohydr. Polym., 257 (2021) 117588, doi:10.1016/j.carbpol.2020.117588.
  43. T. Alp Arıcı, A.S. Özcan, A. Özcan, Biosorption characteristics of Cu(II) and Cd(II) ions by modified alginate, J. Polym. Environ., 28 (2020) 3221–3234.
  44. B. Pérez-Cid, S. Calvar, A.B. Moldes, J. Manuel Cruz, Effective removal of cyanide and heavy metals from an industrial electroplating stream using calcium alginate hydrogels, Molecules, 25 (2020) 5183, doi:10.3390/molecules25215183.
  45. M.E. Mahmoud, M.M. Saleh, M.M. Zaki, G.M. Nabil, A sustainable nanocomposite for removal of heavy metals from water based on crosslinked sodium alginate with iron oxide waste material from steel industry, J. Environ. Chem. Eng., 8 (2020) 104015, doi: 10.1016/j.jece.2020.104015.
  46. A.M. Elgarahy, K.Z. Elwakeel, S.H. Mohammad, G.A. Elshoubaky, Multifunctional eco-friendly sorbent based on marine brown algae and bivalve shells for subsequent uptake of Congo red dye and copper(II) ions, J. Environ. Chem. Eng., 8 (2020) 103915, doi: 10.1016/j.jece.2020.103915.
  47. T. Wilan, R. Hadisoebroto, A. Rinanti, Coppper biosorption using beads biosorbent of mixed culture microalgae, J. Phys. Conf. Ser., 1402 (2019) 022110, doi: 10.1088/1742-6596/1402/2/022110.
  48. D. Tong, K. Fang, H. Yang, J. Wang, C. Zhou, W. Yu, Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate, Environ. Sci. Pollut. Res., 26 (2019) 16482–16492.
  49. S. Saha, M. Venkatesh, H. Basu, M.V. Pimple, R.K. Singhal, Recovery of gold using graphene oxide/calcium alginate hydrogel beads from a scrap solid state detector, J. Environ. Chem. Eng., 7 (2019) 103134, doi:10.1016/j.jece.2019.103134.
  50. I. Ayouch, I. Barrak, Z. Kassab, M. El Achaby, A. Barhoun, K. Draoui, Impact of the drying process on the efficiency of alginate beads for cadmium removal from water: kinetic, isotherm and thermodynamic study, Environ. Technol. Innovation, 20 (2020) 101157, doi: 10.1016/j.eti.2020.101157.
  51. B.M. Córdova, C.R. Jacinto, H. Alarcón, I.M. Mejía, R.C. López, D. de Oliveira Silva, E.T.G. Cavalheiro, T. Venâncio, J.Z. Dávalos, A.C. Valderrama, Chemical modification of sodium alginate with thiosemicarbazide for the removal of Pb(II) and Cd(II) from aqueous solutions, Int. J. Biol. Macromol., 120 (2018) 2259–2270.
  52. D. Ko, H. Kim, H. Lee, C.T. Yavuz, H.R. Andersen, Y. Hwang, Applicability of disulfide-polymer particles surface embedded on alginate beads for cadmium removal from airport derived stormwater, J. Environ. Chem. Eng., 6 (2018) 4124–4129.
  53. S. Kwiatkowska-Marks, M. Wójcik, Removal of cadmium(II) from aqueous solutions by calcium alginate beads, Sep. Sci. Technol., 49 (2014) 2204–2211.
  54. D. Kołodyńska, M. Gęca, E. Skwarek, O. Goncharuk, Titaniacoated silica alone and modified by sodium alginate as sorbents for heavy metal ions, Nanoscale Res. Lett., 13 (2018) 96, doi: 10.1186/s11671-018-2512-7.
  55. M. Kica, T. Vincent, A. Trochimczuk, R. Navarro, E. Guibal, Tetraalkylphosphonium ionic liquid encapsulation in alginate beads for Cd(II) sorption from HCl solutions, Solvent Extr. Ion Exch., 32 (2014) 543–561.
  56. J. Alba, R. Navarro, I. Saucedo, T. Vincent, E. Guibal, Cadmium recovery from HCl solutions Using Cyanex 301 and Cyanex 302 immobilized in alginate capsules (matrix-type vs. mononuclear-type mode of encapsulation), Solvent Extr. Ion Exch., 35 (2017) 345–362.
  57. R. Alfaro-Cuevas-Villanueva, A.R. Hidalgo-Vázquez, C. de Jesús Cortés Penagos, R. Cortés-Martínez, Thermodynamic, kinetic, and equilibrium parameters for the removal of lead and cadmium from aqueous solutions with calcium alginate beads, Sci. World J., 2014 (2014) 647512, doi: 10.1155/2014/647512.
  58. A. Benettayeb, E. Guibal, A. Morsli, R. Kessas, Chemical modification of alginate for enhanced sorption of Cd(II), Cu(II) and Pb(II), Chem. Eng. J., 316 (2017) 704–714.
  59. Y.-y. Wang, W.-b. Yao, Q.-w. Wang, Z.-h. Yang, L.-f. Liang, L.-y. Chai, Synthesis of phosphate-embedded calcium alginate beads for Pb(II) and Cd(II) sorption and immobilization in aqueous solutions, Trans. Nonferrous Met. Soc. China, 26 (2016) 2230–2237.
  60. M. Jain, V.K. Garg, K. Kadirvelu, Cadmium(II) sorption and desorption in a fixed bed column using sunflower waste carbon calcium-alginate beads, Bioresour. Technol., 129 (2013) 242–248.
  61. R.G. Huamani-Palomino, C.R. Jacinto, H. Alarcón, I.M. Mejía, R.C. López, D. de Oliveira Silva, E.T.G. Cavalheiro,
    T. Venâncio, J.Z. Dávalos, A.C. Valderrama, Chemical modification of alginate with cysteine and its application for the removal of Pb(II) from aqueous solutions, Int. J. Biol. Macromol., 129 (2019) 1056–1068.
  62. D. Tahtat, M.N. Bouaicha, S. Benamer, A. Nacer-Khodja, M. Mahlous, Development of alginate gel beads with a potential use in the treatment against acute lead poisoning, Int. J. Biol. Macromol., 105 (2017) 1010–1016.
  63. M. Kuczajowska-Zadrożna, U. Filipkowska, T. Jóźwiak, Adsorption of Cu(II) and Cd(II) from aqueous solutions by chitosan immobilized in alginate beads, J. Environ. Chem. Eng., 8 (2020) 103878, doi:10.1016/j.jece.2020.103878.
  64. R.R. Pawar, Lalhmunsiama, P.G. Ingole, S.-M. Lee, Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment, Int. J. Biol. Macromol., 164 (2020) 3145–3154.
  65. M. Kumar, H.S. Dosanjh, H. Singh, Removal of lead and copper metal ions in single and binary systems using biopolymer modified spinel ferrite, J. Environ. Chem. Eng., 6 (2018) 6194–6206.
  66. L. Pan, Z. Wang, Q. Yang, R. Huang, Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel, Nanomaterials, 8 (2018) 957, doi:10.3390/nano8110957.
  67. N. Jiang, Y. Xu, Y. Dai, W. Luo, L. Dai, Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake, J. Hazard. Mater., 215–216 (2012) 17–24.
  68. T. Gotoh, K. Matsushima, K.-I. Kikuchi, Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions, Chemosphere, 55 (2004) 135–140.
  69. H. Roh, M.-R. Yu, K. Yakkala, J.R. Koduru, J.-K. Yang, Y.-Y. Chang, Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads, J. Ind. Eng. Chem., 26 (2015) 226–233.
  70. X.-H. Do, B.-K. Lee, Removal of Pb2+ using a biochar–alginate capsule in aqueous solution and capsule regeneration, J. Environ. Manage., 131 (2013) 375–382.
  71. S. Zhang, F. Xu, Y. Wang, W. Zhang, X. Peng, F. Pepe, Silica modified calcium alginate–xanthan gum hybrid bead composites for the removal and recovery of Pb(II) from aqueous solution, Chem. Eng. J., 234 (2013) 33–42.
  72. T. Barcelos da Costa, M.G. Carlos da Silva, M.G. Adeodato Vieira, Development of a natural polymeric bioadsorbent based on sericin, alginate and poly(vinyl alcohol) for the recovery of ytterbium from aqueous solutions, J. Cleaner Prod., 279 (2021) 123555, doi: 10.1016/j.jclepro.2020.123555.
  73. A.M. Elgarahy, K.Z. Elwakeel, A. Akhdhar, M.F. Hamza, Recent advances in greenly synthesized nanoengineered materials for water/wastewater remediation: an overview, Nanotechnol. Environ. Eng., 6 (2021), doi:10.1007/s41204-021-00104-5.
  74. A. Sharif, M. Khorasani, F. Shemirani, Nanocomposite bead (NCB) based on bio-polymer alginate caged magnetic graphene oxide synthesized for adsorption and preconcentration of lead(II) and copper(II) ions from urine, saliva and water samples, J. Inorg. Organomet. Polym. Mater., 28 (2018) 2375–2387.
  75. Y. Song, N. Wang, L.-y. Yang, Y.-g. Wang, D. Yu, X.-k. Ouyang, Facile fabrication of ZIF-8/calcium alginate microparticles for highly efficient adsorption of Pb(II) from aqueous solutions, Ind. Eng. Chem. Res., 58 (2019) 6394–6401.
  76. H. Basu, S. Saha, M.V. Pimple, R.K. Singhal, Graphene-prussian blue nanocomposite impregnated in alginate for efficient removal of cesium from aquatic environment, J. Environ. Chem. Eng., 6 (2018) 4399–4407.
  77. J. Alba, R. Navarro, I. Saucedo, T. Vincent, E. Guibal, Extractant immobilization in alginate capsules (matrix- and mononucleartype): application to Pb(II) sorption from HCl solutions, Materials, 10 (2017) 634, doi:10.3390/ma10060634.
  78. S. Tiwari, A. Hasan, L.M. Pandey, A novel bio-sorbent comprising encapsulated Agrobacterium fabrum (SLAJ731) and iron oxide nanoparticles for removal of crude oil co-contaminant, lead Pb(II), J. Environ. Chem. Eng., 5 (2017) 442–452.
  79. K. Sangeetha, G. Vidhya, G. Vasugi, E.K. Girija, Lead and cadmium removal from single and binary metal ion solution by novel hydroxyapatite/alginate/gelatin nanocomposites, J. Environ. Chem. Eng., 6 (2018) 1118–1126.
  80. K. Todorova, Z. Velkova, M. Stoytcheva, G. Kirova, S. Kostadinova, V. Gochev, Novel composite biosorbent from Bacillus cereus for heavy metals removal from aqueous solutions, Biotechnol. Biotechnol. Equip., 33 (2019) 730–738.
  81. K.K. Kadimpati, Design of hybrid PVA–CA–Jania rubens biomatrix for removal of lead, Int. J. Phytorem., 19 (2017) 183–190.
  82. Y.N. Mata, M.L. Blázquez, A. Ballester, F. González, J.A. Muñoz, Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus, J. Hazard. Mater., 163 (2009) 555–562.
  83. G. Bayramoğlu, I. Tuzun, G. Celik, M. Yilmaz, M.Y. Arica, Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads, Int. J. Miner. Process., 81 (2006) 35–43.
  84. J.V. Milojković, Z.R. Lopičić, I.P. Anastopoulos, J.T. Petrović, S.Z. Milićević, M.S. Petrović, M.D. Stojanović, Performance of aquatic weed – waste Myriophyllum spicatum immobilized in alginate beads for the removal of Pb(II), J. Environ. Manage., 232 (2019) 97–109.
  85. H. Zhang, M. Su, M. Li, J. Yan, J. Tang, C. Gong, D. Chen, T. Xiao, Y. Chen, Efficient removal of Pb(II) ions from aqueous solution by novel PVA-sodium alginate immobilized sulfate reducing bacteria, Desal. Water Treat., 138 (2019) 280–290.
  86. S. Ravulapalli, R. Kunta, Removal of lead(II) from wastewater using active carbon of Caryota urens seeds and its embedded calcium alginate beads as adsorbents, J. Environ. Chem. Eng., 6 (2018) 4298–4309.
  87. S. Wang, T. Vincent, C. Faur, E. Guibal, Algal foams applied in fixed-bed process for lead(II) removal using recirculation or one-pass modes, Mar. Drugs, 15 (2017) 315, doi: 10.3390/md15100315.
  88. S. Wang, T. Vincent, C. Faur, E. Guibal, Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads, Bioresour. Technol., 231 (2017) 26–35.
  89. S. Kumari, S. Mahapatra, S. Das, Ca-alginate as a support matrix for Pb(II) biosorption with immobilized biofilm associated extracellular polymeric substances of Pseudomonas aeruginosa N6P6, Chem. Eng. J., 328 (2017) 556–566.
  90. A. Kőnig-Péter, C. Csudai, A. Felinger, F. Kilár, T. Pernyeszi, Column studies of heavy metal biosorption by immobilized Spirulina platensis-maxima cells, Desal. Water Treat., 57 (2016) 28340–28348.
  91. C. Liu, J. Ye, Y. Lin, J. Wu, G.W. Price, D. Burton, Y. Wang, Removal of cadmium(II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions, Environ. Pollut., 264 (2020) 114785, doi: 10.1016/j.envpol.2020.114785.
  92. Y. Liu, J. Huang, H. Xu, Y. Zhang, T. Hu, W. Chen, H. Hu, J. Wu, Y. Li, G. Jiang, A magnetic macro-porous biochar sphere as vehicle for the activation and removal of heavy metals from contaminated agricultural soil, Chem. Eng. J., 390 (2020) 124638, doi: 10.1016/j.cej.2020.124638.
  93. Y. Li, M. Zhou, G.I.N. Waterhouse, J. Sun, W. Shi, S. Ai, Efficient removal of cadmium ions from water by adsorption on a magnetic carbon aerogel, Environ. Sci. Pollut. Res., 28 (2021) 5149–5157.
  94. A. Sigdel, W. Jung, B. Min, M. Lee, U. Choi, T. Timmes, S.-J. Kim, C.-U. Kang, R. Kumar, B.-H. Jeon, Concurrent removal of cadmium and benzene from aqueous solution by powdered activated carbon impregnated alginate beads, CATENA, 148 (2017) 101–107.
  95. B. Wang, B. Gao, Y. Wan, Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II), J. Ind. Eng. Chem., 61 (2018) 161–168.
  96. I.P. Verduzco-Navarro, N. Rios-Donato, C.F. Jasso-Gastinel, Á. de Jesús Martínez-Gómez, E. Mendizábal, Removal of Cu(II) by fixed-bed columns using Alg-Ch and Alg-ChS hydrogel beads: effect of operating conditions on the mass transfer zone, Polymers, 12 (2020) 2345, doi: 10.3390/polym12102345.
  97. M. Hassan, M.H. Mohamed, I.A. Udoetok, B.G.K. Steiger, L.D. Wilson, Sequestration of sulfate anions from groundwater by biopolymer-metal composite materials, Polymers, 12 (2020) 1502, doi:10.3390/polym12071502.
  98. K. Attar, H. Demey, D. Bouazza, A.M. Sastre, Sorption and desorption studies of Pb(II) and Ni(II) from aqueous solutions by a new composite based on alginate and magadiite materials, Polymers, 11 (2019) 340, doi:10.3390/polym11020340.
  99. M. Yari, P. Derakhshi, K. Tahvildari, M. Nozari, Preparation and characterization of magnetic iron nanoparticles on alginate/bentonite substrate for the adsorptive removal of Pb2+ ions to protect the environment, J. Polym. Environ., 29 (2021) 2185–2199.
  100. F. Aziz, M.E. Achaby, A. Lissaneddine, K. Aziz, N. Ouazzani, R. Mamouni, L. Mandi, Composites with alginate beads: a novel design of nano-adsorbents impregnation for largescale continuous flow wastewater treatment pilots, Saudi J. Biol. Sci., 27 (2020) 2499–2508.
  101. W. Zhang, F. Xu, Y. Wang, M. Luo, D. Wang, Facile control of zeolite NaA dispersion into xanthan gum–alginate binary biopolymer network in improving hybrid composites for adsorptive removal of Co2+ and Ni2+, Chem. Eng. J., 255 (2014) 316–326.
  102. N. Lázaro, A.L. Sevilla, S. Morales, A.M. Marqués, Heavy metal biosorption by gellan gum gel beads, Water Res., 37 (2003) 2118–2126.
  103. G. Sharma, B. Thakur, Mu. Naushad, A. Kumar, F.J. Stadler, S.M. Alfadul, G.T. Mola, Applications of nanocomposite hydrogels for biomedical engineering and environmental protection, Environ. Chem. Lett., 16 (2018) 113–146.
  104. E. Siswoyo, I. Qoniah, P. Lestari, J.A. Fajri, R.A. Sani, D.G. Sari, T. Boving, Development of a floating adsorbent for cadmium derived from modified drinking water treatment plant sludge, Environ. Technol. Innovation, 14 (2019) 100312, doi: 10.1016/j.eti.2019.01.006.
  105. U. Filipkowska, M. Kuczajowska-Zadrozna, Adsorption kinetics of Cd(II), Zn(II) and Cu(II) and their mixtures from an aqueous solution onto immobilized activated sludge, Desal. Water Treat., 180 (2020) 284–292.
  106. G. Germanos, S. Youssef, W. Farah, B. Lescop, S. Rioual, M. Abboud, The impact of magnetite nanoparticles on the physicochemical and adsorption properties of magnetic alginate beads, J. Environ. Chem. Eng., 8 (2020) 104223, doi: 10.1016/j.jece.2020.104223.
  107. F. Jiaying, Z. Jun, S. Weifeng, L. Jianguo, B. Bingqin, X. Shaohua, Performance and mechanism of
    Cu(II)-containing wastewater treatment by magnetic composite of SA@L-Cys@Fe3O4, Chin. J. Environ. Eng., 14 (2020) 3251–3261.
  108. P.L. Yap, K. Hassan, Y.L. Auyoong, N. Mansouri, F. Farivar, D.N.H. Tran, D. Losic, All-in-one bioinspired multifunctional graphene biopolymer foam for simultaneous removal of multiple water pollutants, Adv. Mater. Interfaces, 7 (2020) 2000664, doi: 10.1002/admi.202000664.
  109. Z. Wu, W. Deng, W. Zhou, J. Luo, Novel magnetic polysaccharide/graphene oxide@Fe3O4 gel beads for adsorbing heavy metal ions, Carbohydr. Polym., 216 (2019) 119–128.
  110. Y.Q. Liang, H. Li, X.M. Mao, Y. Li, C.X. Wang, L.Y. Jin, L.J. Zhao, Competitive adsorption of methylene blue and Cu(II) onto magnetic graphene oxide/alginate beads, Russ. J. Phys. Chem. A, 94 (2020) 2605–2613.
  111. H.-C. Tao, S. Li, L.-J. Zhang, Y.-Z. Chen, L.-P. Deng, Magnetic chitosan/sodium alginate gel bead as a novel composite adsorbent for Cu(II) removal from aqueous solution, Environ. Geochem. Health, 41 (2019) 297–308.
  112. X. Yi, M. Yang, L. Mo, W. Xu, S. Wang, J. He, J. Gu, M. Ou, X. Xu, Modification of chitosan/calcium alginate/Fe3O4 hydrogel microsphere for enhancement of Cu(II) adsorption, Environ. Sci. Pollut. Res., 25 (2018) 3922–3932.
  113. X. Yi, J. He, Y. Guo, Z. Han, M. Yang, J. Jin, J. Gu, M. Ou, X. Xu, Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu(II) and U(VI) from aqueous solutions, Ecotoxicol. Environ. Saf., 147 (2018) 699–707.
  114. E. Matei, A.M. Predescu, C. Predescu, M.G. Sohaciu, A. Berbecaru, C.I. Covaliu, Characterization and application results of two magnetic nanomaterials, J. Environ. Qual., 42 (2013) 129–136.
  115. H.C. Vu, A.D. Dwivedi, T.T. Le, S.-H. Seo, E.-J. Kim, Y.-S. Chang, Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: role of crosslinking metal cations in pH control, Chem. Eng. J., 307 (2017) 220–229.
  116. S.-J. Wang, H. Bu, H.-J. Chen, T. Hu, W.-Z. Chen, J.-H. Wu, H.-J. Hu, M.-Z. Lin, Y. Li, G.-B. Jiang, Floatable magnetic aerogel based on alkaline residue used for the convenient removal of heavy metals from wastewater, Chem. Eng. J., 399 (2020) 125760, doi: 10.1016/j.cej.2020.125760.
  117. L. de Castro Alves, S. Yáñez-Vilar, Y. Piñeiro-Redondo, J. Rivas, Efficient separation of heavy metals by magnetic nanostructured beads, Inorganics, 8 (2020) 40, doi: 10.3390/ inorganics8060040.
  118. I. Ali, C. Peng, D. Lin, D.P. Saroj, I. Naz, Z.M. Khan, M. Sultan, M. Ali, Encapsulated green magnetic nanoparticles for the removal of toxic Pb2+ and Cd2+ from water: development, characterization and application, J. Environ. Manage., 234 (2019) 273–289.
  119. L. de Castro Alves, S. Yáñez-Vilar, Y. Piñeiro-Redondo, J. Rivas, Novel magnetic nanostructured beads for cadmium(II) removal, Nanomaterials, 9 (2019) 356, doi: 10.3390/nano9030356.
  120. J. Feng, J. Zhang, W. Song, J. Liu, Z. Hu, B. Bao, An environmental-friendly magnetic bio-adsorbent for highefficiency Pb(II) removal: preparation, characterization and its adsorption performance, Ecotoxicol. Environ. Saf., 203 (2020) 111002, doi: 10.1016/j.ecoenv.2020.111002.
  121. M.A. Younis, N. Raziya, R. Asma, I. Munawar, M.R. Younis, M. Qaisar, Adsorption of Ag(I), Cr(VI) and Pb(II) from aqueous media onto different adsorbent types, Asian J. Chem., 27 (2015) 3308–3314.
  122. H. Zhang, A.M. Omer, Z. Hu, L.-Y. Yang, C. Ji, X.-k. Ouyang, Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu(II) adsorption, Int. J. Biol. Macromol., 135 (2019) 490–500.
  123. F. Ahmadpoor, S.A. Shojaosadati, S.Z. Mousavi, Magnetic silica coated iron carbide/alginate beads: synthesis and application for adsorption of Cu(II) from aqueous solutions, Int. J. Biol. Macromol., 128 (2019) 941–947.
  124. H. Zhu, Y. Fu, R. Jiang, J. Yao, L. Xiao, G. Zeng, Optimization of copper(II) adsorption onto novel magnetic calcium alginate/maghemite hydrogel beads using response surface methodology, Ind. Eng. Chem. Res., 53 (2014) 4059–4066.
  125. J. Shim, M. Kumar, S. Mukherjee, R. Goswami, Sustainable removal of pernicious arsenic and cadmium by a novel composite of MnO2 impregnated alginate beads: a costeffective approach for wastewater treatment, J. Environ. Manage., 234 (2019) 8–20.