References
- UNESCO, The United Nations World Water Development
Report 2020: Water and Climate Change, United Nations
Educational, Scientific and Cultural Organization, 2020.
- C. Charcosset, A review of membrane processes and renewable
energies for desalination, Desalination, 245 (2009) 214–231.
- N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and
evaluation of the economics of water desalination: current
and future challenges for better water supply sustainability,
Desalination, 309 (2013) 197–207.
- J. Eke, A. Yusuf, A. Giwa, A. Sodiq, The global status
of desalination: an assessment of current desalination
technologies, plants and capacity, Desalination, 495 (2020)
114633, doi: 10.1016/j.desal.2020.114633.
- V.G. Gude, Desalination and sustainability–an appraisal and
current perspective, Water Res., 89 (2016) 87–106.
- Z. Zhang, O.R. Lokare, A.V. Gusa, R.D. Vidic, Pretreatment of
brackish water reverse osmosis (BWRO) concentrate to enhance
water recovery in inland desalination plants by direct contact
membrane distillation (DCMD), Desalination, 508 (2021)
115050, doi: 10.1016/j.desal.2021.115050.
- K.J. Lu, Z.L. Cheng, J. Chang, L. Luo, T.-S. Chung, Design of
zero liquid discharge desalination (ZLDD) systems consisting of
freeze desalination, membrane distillation, and crystallization
powered by green energies, Desalination, 458 (2019)
66–75.
- A.J. Toth, Modelling and optimisation of multi-stage flash
distillation and reverse osmosis for desalination of saline
process wastewater sources, Membranes, 10 (2020) 265,
doi: 10.3390/membrane S10100265.
- M. Cappelle, W.S. Walker, T.A. Davis, Improving desalination
recovery using zero discharge desalination (ZDD): a process
model for evaluating technical feasibility, Ind. Eng. Chem. Res.,
56 (2017) 10448–10460.
- A. Panagopoulos, K.-J. Haralambous, M. Loizidou, Desalination
brine disposal methods and treatment technologies - a
review, Sci. Total Environ., 693 (2019) 133545, doi: 10.1016/j.
scitotenv.2019.07.351.
- I.S. Al-Mutaz, Msf challenges and survivals, Desal. Water Treat.,
177 (2020) 14–22.
- I.S. Al-Mutaz, Features of multi-effect evaporation desalination
plants, Desal. Water Treat., 54 (2015) 3227–3235.
- A. Panagopoulos, K.-J. Haralambous, Minimal liquid
discharge (MLD) and zero liquid discharge (ZLD) strategies
for wastewater management and resource recovery – analysis,
challenges and prospects, J. Environ. Chem. Eng., 8 (2020)
104418, doi: 10.1016/j.jece.2020.104418.
- M. Ahmed, D. Hoey, W.H. Shayya, M.F. Goosen, Brine disposal
from inland desalination plants: current status, problems,
and opportunities, In: Volume II of Environmental Sciences
and Environmental Computing (Electronic Book Series),
EnviroComp Consulting, Inc., CA 94539, USA.
- R. Schwantes, K. Chavan, D. Winter, C. Felsmann, J. Pfafferott,
Techno-economic comparison of membrane distillation and
MVC in a zero liquid discharge application, Desalination,
428 (2018) 50–68.
- G.P. Thiel, E.W. Tow, L.D. Banchik, H.W. Chung, Energy
consumption in desalinating produced water from shale oil and
gas extraction, Desalination, 366 (2015) 94–112.
- R.L. McGinnis, N.T. Hancock, M.S. Nowosielski-Slepowron,
G.D. McGurgan, Pilot demonstration of the NH3/CO2
forward osmosis desalination process on high salinity brines,
Desalination, 312 (2013) 67–74.
- R. Creusen, J. van Medevoort, M. Roelands, A. van Renesse
van Duivenbode, J.H. Hanemaaijer, R. van Leerdam, Integrated
membrane distillation–crystallization: process design and cost
estimations for seawater treatment and fluxes of single salt
solutions, Desalination, 323 (2013) 8–16.
- G. Guan, R. Wang, F. Wicaksana, X. Yang, A.G. Fane, Analysis
of membrane distillation crystallization system for high salinity
brine treatment with zero discharge using Aspen flowsheet
simulation, Ind. Eng. Chem. Res., 51 (2012) 13405–13413.
- F. Edwie, T.-S. Chung, Development of simultaneous membrane
distillation–crystallization (SMDC) technology for treatment
of saturated brine, Chem. Eng. Sci., 98 (2013) 160–172.
- E.K. Summers, H.A. Arafat, Energy efficiency comparison of
single-stage membrane distillation (MD) desalination cycles
in different configurations, Desalination, 290 (2012) 54–66.
- F. Tahir, S.G. Al-Ghamdi, Integrated MED and HDH desalination
systems for an energy-efficient zero liquid discharge (ZLD)
system, Energy Rep., 8 (2022) 29–34.
- D.U. Lawal, M.A. Antar, A.E. Khalifa, Integration of a MSF
desalination system with a HDH system for brine recovery,
Sustainability, 13 (2021) 3506, doi: 10.3390/su13063506.
- K. Loganathan, P. Chelme-Ayala, M.G. El-Din, Treatment of
basal water using a hybrid electrodialysis reversal–reverse
osmosis system combined with a low-temperature crystallizer
for near-zero liquid discharge, Desalination, 363 (2015) 92–98.
- T.A. Davis, Zero Discharge Seawater Desalination: Integrating
the Production of Freshwater, Salt, Magnesium, and Bromine,
Desalination and Water Purification Research Development
Program Report No. 111, University of South Carolina, USA,
2007.
- J. Chang, J. Zuo, K.-J. Lu, T.-S. Chung, Membrane development
and energy analysis of freeze desalination-vacuum membrane
distillation hybrid systems powered by LNG regasification and
solar energy, Desalination, 449 (2019) 16–25.
- S. Kumarasamy, S. Narasimhan, S. Narasimhan, Optimal
operation of battery-less solar powered reverse osmosis plant
for desalination, Desalination, 375 (2015) 89–99.
- D.W. Solutions, Filmtec™ Reverse Osmosis Membranes,
Technical Manual, Form 399, 2010, pp. 1–180. Available at:
https://www.rainmandesal.com/wp-content/uploads/2018/09/dow-filmtec-sw30-manual.pdf, (Accessed 10-8-2022).
- M. Khayet, Membranes and theoretical modeling of membrane
distillation: a review, Adv. Colloid Interface Sci., 164 (2011)
56–88.
- S. Lin, N.Y. Yip, M. Elimelech, Direct contact membrane
distillation with heat recovery: thermodynamic insights from
module scale modeling, J. Membr. Sci., 453 (2014) 498–515.
- A. Ghorbani, B. Bayati, E. Drioli, F. Macedonio, T. Kikhavani,
M. Frappa, Modeling of nanofiltration process using DSPM-DE
model for purification of amine solution, Membranes, 11 (2021)
230, doi:10.3390/membranes11040230.
- Y. Roy, M.H. Sharqawy, Modeling of flat-sheet and spiralwound
nanofiltration configurations and its application in
seawater nanofiltration, J. Membr. Sci., 493 (2015) 360–372.
- S. Adham, T. Gillogly, E. Hansen, G. Lehman, E. Rosenblum,
Comparison of Advanced Treatment Methods for Partial
Desalting of Tertiary Effluents, US Department of the
Interior, Bureau of Reclamation, 2009. Available at: https://www.usbr.gov/research/dwpr/reportpdfs/report097.pdf,
(Accessed 10-8-2022).
- D. Andriollo, Experimental and Modeling-based Evaluation of
Electrodialysis for the Desalination of Watery Streams, Master
Thesis, University of Padoua, Padoua, Italy, 2014.
- W. Juda, W.A. McRae, Coherent ion-exchange gels and
membranes, J. Am. Chem. Soc., 72 (1950) 1044–1044.
- H. Strathmann, Ion-Exchange Membrane Separation Processes,
Elsevier, Amsterdam, The Netherlands, 2004.
- S. Misztal, D. Verdoes, Investigation Into Methods to Increase
the Crystal Size in Suspension Melt Crystallization of
Caprolactam, Proceedings of the 14th Symposium on Industrial
Crystallization, Cambridge, UK, 1999.
- A. Bamberger, R. Eek, A. Fellholter, H.-P. Wirges, Investigation
of a Cooling Crystallization of an Organic Compound by
Combining Laboratory Experiments, Simulation and Plant
Experiments, Proceedings of the 14th International Symposium
on Industrial Crystallization (CD-ROM), Cambridge, UK, 1999.
- G. Amikam, P. Nativ, Y. Gendel, Chlorine-free alkaline seawater
electrolysis for hydrogen production, Int. J. Hydrogen
Energy, 43 (2018) 6504–6514.
- U. DOE, DOE Technical Targets for Hydrogen Production
from Electrolysis, 2018. Available at: https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-productionphotoelectrochemical-
water-splitting, (Accessed 10-8-2022)
- K.W. Harrison, R. Remick, A. Hoskin, G. Martin, Hydrogen
Production: Fundamentals and Case Study Summaries,
National Renewable Energy Lab (NREL), Golden, Co., United
States, 2010.
- F. Barbir, PEM electrolysis for production of hydrogen from
renewable energy sources, Sol. Energy, 78 (2005) 661–669.
- B.T. Scheffler, S. Heidrich, Fixing the Specification of the
‘To-Be-Developed’ Stacks, Stack Components and Manufacturing
Systems,
European Commission Report Fit-4-
AMandA D1.1, 2017. Available at: https://ec.europa.eu/
research/participants/documents/downloadPublic?document
Ids=080166e5b4b51faa&appId=PPGMS
- S. Jancic, P.A. Grootscholten, Industrial Crystallization,
Springer, Springer, USA, 1984.
- Y. Kuang, M.J. Kenney, Y. Meng, W.-H. Hung, Y. Liu, J.E. Huang,
R. Prasanna, P. Li, Y. Li, L. Wang, Solar-Driven, Highly
Sustained Splitting of Seawater Into Hydrogen and Oxygen
Fuels, Proceedings of the National Academy of Sciences, USA,
116 (2019) 6624–6629.