References

  1. UNESCO, The United Nations World Water Development Report 2020: Water and Climate Change, United Nations Educational, Scientific and Cultural Organization, 2020.
  2. C. Charcosset, A review of membrane processes and renewable energies for desalination, Desalination, 245 (2009) 214–231.
  3. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  4. J. Eke, A. Yusuf, A. Giwa, A. Sodiq, The global status of desalination: an assessment of current desalination technologies, plants and capacity, Desalination, 495 (2020) 114633, doi: 10.1016/j.desal.2020.114633.
  5. V.G. Gude, Desalination and sustainability–an appraisal and current perspective, Water Res., 89 (2016) 87–106.
  6. Z. Zhang, O.R. Lokare, A.V. Gusa, R.D. Vidic, Pretreatment of brackish water reverse osmosis (BWRO) concentrate to enhance water recovery in inland desalination plants by direct contact membrane distillation (DCMD), Desalination, 508 (2021) 115050, doi: 10.1016/j.desal.2021.115050.
  7. K.J. Lu, Z.L. Cheng, J. Chang, L. Luo, T.-S. Chung, Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies, Desalination, 458 (2019) 66–75.
  8. A.J. Toth, Modelling and optimisation of multi-stage flash distillation and reverse osmosis for desalination of saline process wastewater sources, Membranes, 10 (2020) 265, doi: 10.3390/membrane S10100265.
  9. M. Cappelle, W.S. Walker, T.A. Davis, Improving desalination recovery using zero discharge desalination (ZDD): a process model for evaluating technical feasibility, Ind. Eng. Chem. Res., 56 (2017) 10448–10460.
  10. A. Panagopoulos, K.-J. Haralambous, M. Loizidou, Desalination brine disposal methods and treatment technologies - a review, Sci. Total Environ., 693 (2019) 133545, doi: 10.1016/j. scitotenv.2019.07.351.
  11. I.S. Al-Mutaz, Msf challenges and survivals, Desal. Water Treat., 177 (2020) 14–22.
  12. I.S. Al-Mutaz, Features of multi-effect evaporation desalination plants, Desal. Water Treat., 54 (2015) 3227–3235.
  13. A. Panagopoulos, K.-J. Haralambous, Minimal liquid discharge (MLD) and zero liquid discharge (ZLD) strategies for wastewater management and resource recovery – analysis, challenges and prospects, J. Environ. Chem. Eng., 8 (2020) 104418, doi: 10.1016/j.jece.2020.104418.
  14. M. Ahmed, D. Hoey, W.H. Shayya, M.F. Goosen, Brine disposal from inland desalination plants: current status, problems, and opportunities, In: Volume II of Environmental Sciences and Environmental Computing (Electronic Book Series), EnviroComp Consulting, Inc., CA 94539, USA.
  15. R. Schwantes, K. Chavan, D. Winter, C. Felsmann, J. Pfafferott, Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application, Desalination, 428 (2018) 50–68.
  16. G.P. Thiel, E.W. Tow, L.D. Banchik, H.W. Chung, Energy consumption in desalinating produced water from shale oil and gas extraction, Desalination, 366 (2015) 94–112.
  17. R.L. McGinnis, N.T. Hancock, M.S. Nowosielski-Slepowron, G.D. McGurgan, Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines, Desalination, 312 (2013) 67–74.
  18. R. Creusen, J. van Medevoort, M. Roelands, A. van Renesse van Duivenbode, J.H. Hanemaaijer, R. van Leerdam, Integrated membrane distillation–crystallization: process design and cost estimations for seawater treatment and fluxes of single salt solutions, Desalination, 323 (2013) 8–16.
  19. G. Guan, R. Wang, F. Wicaksana, X. Yang, A.G. Fane, Analysis of membrane distillation crystallization system for high salinity brine treatment with zero discharge using Aspen flowsheet simulation, Ind. Eng. Chem. Res., 51 (2012) 13405–13413.
  20. F. Edwie, T.-S. Chung, Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine, Chem. Eng. Sci., 98 (2013) 160–172.
  21. E.K. Summers, H.A. Arafat, Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations, Desalination, 290 (2012) 54–66.
  22. F. Tahir, S.G. Al-Ghamdi, Integrated MED and HDH desalination systems for an energy-efficient zero liquid discharge (ZLD) system, Energy Rep., 8 (2022) 29–34.
  23. D.U. Lawal, M.A. Antar, A.E. Khalifa, Integration of a MSF desalination system with a HDH system for brine recovery, Sustainability, 13 (2021) 3506, doi: 10.3390/su13063506.
  24. K. Loganathan, P. Chelme-Ayala, M.G. El-Din, Treatment of basal water using a hybrid electrodialysis reversal–reverse osmosis system combined with a low-temperature crystallizer for near-zero liquid discharge, Desalination, 363 (2015) 92–98.
  25. T.A. Davis, Zero Discharge Seawater Desalination: Integrating the Production of Freshwater, Salt, Magnesium, and Bromine, Desalination and Water Purification Research Development Program Report No. 111, University of South Carolina, USA, 2007.
  26. J. Chang, J. Zuo, K.-J. Lu, T.-S. Chung, Membrane development and energy analysis of freeze desalination-vacuum membrane distillation hybrid systems powered by LNG regasification and solar energy, Desalination, 449 (2019) 16–25.
  27. S. Kumarasamy, S. Narasimhan, S. Narasimhan, Optimal operation of battery-less solar powered reverse osmosis plant for desalination, Desalination, 375 (2015) 89–99.
  28. D.W. Solutions, Filmtec™ Reverse Osmosis Membranes, Technical Manual, Form 399, 2010, pp. 1–180. Available at: https://www.rainmandesal.com/wp-content/uploads/2018/09/dow-filmtec-sw30-manual.pdf, (Accessed 10-8-2022).
  29. M. Khayet, Membranes and theoretical modeling of membrane distillation: a review, Adv. Colloid Interface Sci., 164 (2011) 56–88.
  30. S. Lin, N.Y. Yip, M. Elimelech, Direct contact membrane distillation with heat recovery: thermodynamic insights from module scale modeling, J. Membr. Sci., 453 (2014) 498–515.
  31. A. Ghorbani, B. Bayati, E. Drioli, F. Macedonio, T. Kikhavani, M. Frappa, Modeling of nanofiltration process using DSPM-DE model for purification of amine solution, Membranes, 11 (2021) 230, doi:10.3390/membranes11040230.
  32. Y. Roy, M.H. Sharqawy, Modeling of flat-sheet and spiralwound nanofiltration configurations and its application in seawater nanofiltration, J. Membr. Sci., 493 (2015) 360–372.
  33. S. Adham, T. Gillogly, E. Hansen, G. Lehman, E. Rosenblum, Comparison of Advanced Treatment Methods for Partial Desalting of Tertiary Effluents, US Department of the Interior, Bureau of Reclamation, 2009. Available at: https://www.usbr.gov/research/dwpr/reportpdfs/report097.pdf, (Accessed 10-8-2022).
  34. D. Andriollo, Experimental and Modeling-based Evaluation of Electrodialysis for the Desalination of Watery Streams, Master Thesis, University of Padoua, Padoua, Italy, 2014.
  35. W. Juda, W.A. McRae, Coherent ion-exchange gels and membranes, J. Am. Chem. Soc., 72 (1950) 1044–1044.
  36. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, The Netherlands, 2004.
  37. S. Misztal, D. Verdoes, Investigation Into Methods to Increase the Crystal Size in Suspension Melt Crystallization of Caprolactam, Proceedings of the 14th Symposium on Industrial Crystallization, Cambridge, UK, 1999.
  38. A. Bamberger, R. Eek, A. Fellholter, H.-P. Wirges, Investigation of a Cooling Crystallization of an Organic Compound by Combining Laboratory Experiments, Simulation and Plant Experiments, Proceedings of the 14th International Symposium on Industrial Crystallization (CD-ROM), Cambridge, UK, 1999.
  39. G. Amikam, P. Nativ, Y. Gendel, Chlorine-free alkaline seawater electrolysis for hydrogen production, Int. J. Hydrogen Energy, 43 (2018) 6504–6514.
  40. U. DOE, DOE Technical Targets for Hydrogen Production from Electrolysis, 2018. Available at: https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-productionphotoelectrochemical- water-splitting, (Accessed 10-8-2022)
  41. K.W. Harrison, R. Remick, A. Hoskin, G. Martin, Hydrogen Production: Fundamentals and Case Study Summaries, National Renewable Energy Lab (NREL), Golden, Co., United States, 2010.
  42. F. Barbir, PEM electrolysis for production of hydrogen from renewable energy sources, Sol. Energy, 78 (2005) 661–669.
  43. B.T. Scheffler, S. Heidrich, Fixing the Specification of the ‘To-Be-Developed’ Stacks, Stack Components and Manufacturing Systems, European Commission Report Fit-4- AMandA D1.1, 2017. Available at: https://ec.europa.eu/ research/participants/documents/downloadPublic?document Ids=080166e5b4b51faa&appId=PPGMS
  44. S. Jancic, P.A. Grootscholten, Industrial Crystallization, Springer, Springer, USA, 1984.
  45. Y. Kuang, M.J. Kenney, Y. Meng, W.-H. Hung, Y. Liu, J.E. Huang, R. Prasanna, P. Li, Y. Li, L. Wang, Solar-Driven, Highly Sustained Splitting of Seawater Into Hydrogen and Oxygen Fuels, Proceedings of the National Academy of Sciences, USA, 116 (2019) 6624–6629.