References
- B. Jin, B.-M. Wilén, P. Lant, A comprehensive insight into
floc characteristics and their impact on compressibility and
settleability of activated sludge, Chem. Eng. J., 95 (2003)
221–234.
- R. Kocwa-Haluch, T. Woźniakiewicz, Analiza mikroskopowa
osadu czynnego i jej rola w kontroli procesu technologicznego
oczyszczania ścieków (Microscopic analysis of activated
sludge and its role in control of technological process of
wastewater treatment), Tech. Trans. Environ. Eng., 108 (2011)
141–162.
- M.S. Elliot, Impacts of Operating Parameters on Extracellular
Polymeric Substances Production in a High Rate Activated
Sludge System Substances Production in a High Rate
Activated Sludge System with Low Solids Retention Times,
Master’s Thesis, Old Dominion University, Norfolk, 2016,
doi: 10.25777/5mmx-c139.
- V.K. Tyagi, S.-L. Lo, Sludge: a waste or renewable source for
energy and resources recovery?, Renewable Sustainable Energy
Rev., 25 (2013) 708–728.
- A. Demirbas, G. Edris, W.M. Alalayah, Sludge production
from municipal wastewater in sewage treatment plant,
Energy Sources Part A, 39 (2017) 999–1006.
- K. Hagos, J. Zong, D. Li, C. Liu, X. Lu, Anaerobic co-digestion
process for biogas production: progress, challenges and
perspectives, Renewable Sustainable Energy Rev., 76 (2017)
1485–1496.
- L. Appels, J. Baeyens, J. Degrève, R. Dewil, Principles and
potential of the anaerobic digestion of
waste-activated sludge,
Prog. Energy Combust. Sci., 34 (2008) 755–781.
- A.M. Anielak, A. Kłeczek, Humus acids in the digested sludge
and their properties, Materials, 15 (2022) e1475, doi: 10.3390/
ma15041475.
- M. Kowalski, K. Kowalska, J. Wiszniowski, J. Turek-Szytow,
Qualitative analysis of activated sludge using FT-IR technique,
Chem. Pap., 72 (2018) 2699–2706.
- P. Wiercik, B. Frączek, P. Chrobot, Fouling of anion exchanger
by image and FTIR analyses, J. Environ. Chem. Eng., 8 (2020)
e103761, doi: 10.1016/j.jece.2020.103761.
- L.C. Go, W. Holmes, D. Depan, R. Hernandez, Evaluation
of extracellular polymeric substances extracted from waste
activated sludge as a renewable corrosion inhibitor, Peer J.,
7 (2019) e7193, doi: 10.7717/peerj.7193.
- Y. Liu, W. Lv, Z. Zhang, S. Xia, Influencing characteristics
of short-time aerobic digestion on spatial distribution and
adsorption capacity of extracellular polymeric substances in
waste activated sludge, RSC. Adv., 8 (2018) 32172–32177.
- T. Liu, Y. Guo, N. Peng, Q. Lang, Y. Xia, C. Gai, Z. Liu, Nitrogen
transformation among char, tar and gas during pyrolysis of
sewage sludge and corresponding hydrochar, J. Anal. Appl.
Pyrolysis, 126 (2017) 298–306.
- E. Feki, A. Battimelli, S. Sayadi, A. Dhouib, S. Khoufi, High-rate
anaerobic digestion of waste activated sludge by integration of
electro-Fenton process, Molecules, 25 (2020) e626, doi: 10.3390/
molecules25030626.
- S. Yildiz, A. Cӧmert, Fenton process effect on sludge
disintegration, Int. J. Environ. Health Res., 30 (2020) 89–104.
- P. Wiercik, K. Matras, E. Burszta-Adamiak, M. Kuśnierz,
Analysis of the properties and particle size distribution of spent
filter backwash water from groundwater treatment at various
stages of filter washing, Eng. Prot. Environ., 19 (2016) 149–161.
- M. Kuśnierz, Scale of small particle population in activated
sludge flocs, Water Air Soil Pollut., 229 (2018) e327, doi: 10.1007/s11270-018-3979-7.
- W. Burger, K. Krysiak-Baltyn, P.J. Scales, G.J. Martin,
A.D. Stickland, S.L. Gras, The influence of protruding
filamentous bacteria on floc stability and solid–liquid
separation in the activated sludge process, Water Res,
123 (2017) 578–585.
- M. Xie, C. Wang, X. Liu, R. Xiong, Y. Xu, Characteristics of
biochemical and fractal structure of activated sludge with
thermochemical lysis, Water Air Soil Pollut., 228 (2017) e187,
doi: 10.1007/s11270-017-3351-3.
- M. Kuśnierz, P. Wiercik, Analysis of particle size and fractal
dimensions of suspensions contained in raw sewage, treated
sewage and activated sludge, Arch. Environ. Prot., 42 (2016)
67–76.
- Y. Fan, X. Ma, X. Dong, Z. Feng, Y. Dong, Characterisation of
floc size, effective density and sedimentation under various
flocculation mechanisms, Water Sci. Technol., 82 (2020)
1261–1271.
- Z. Li, P. Lu, D. Zhang, F. Song, Simulation of floc size
distribution in flocculation of activated sludge using population
balance model with modified expressions for the aggregation
and breakage, Math. Probl. Eng., 2019 (2019) 5243860,
doi: 10.1155/2019/5243860.
- Z.-H. Li, Y. Guo, Z.-Y. Hang, T. Zhang, H.-Q. Yu, Simultaneous
evaluation of bioactivity and settleability of activated sludge
using fractal dimension as an intermediate variable, Water Res.,
178 (2020) e115834, doi:10.1016/j.watres.2020.115834.
- Q. Dai, X. Jiang, G. Lv, X. Ma, Y. Jin, F. Wang, Y. Chi, J. Yan,
Investigation into particle size influence on PAH formation
during dry sewage sludge pyrolysis: TG-FTIR analysis and
batch scale research, J. Anal. Appl. Pyrolysis, 112 (2015) 388–393.
- L. Yan, Y. Liu, Y. Wen, Y. Ren, G. Hao, Y. Zhang, Role and
significance of extracellular polymeric substances from
granular sludge for simultaneous removal of organic matter
and ammonia nitrogen, Bioresour. Technol., 179 (2015) 460–466.
- D.L. Black, M.Q. McQuay, M.P. Bonin, Laser-based techniques
for particle-size measurement: a review of sizing methods and
their industrial applications, Prog. Energy Combust., 22 (1996)
267–306.
- Malvern Instruments Ltd., Basic Principles of Particle Size
Analysis. Available at: https://www.atascientific.com.au/
wp-content/uploads/2017/02/AN020710-Basic-Principles-
Particle-Size-Analysis.pdf, (Accessed 14 December 2021).
- P.J. Arauzo, M. Atienza-Martínez, J. Ábrego, M.P. Olszewski,
Z. Cao, A. Kruse, Combustion characteristics of hydrochar
and pyrochar derived from digested sewage sludge, Energies,
13 (2020) e4164, doi:10.3390/en13164164.
- J.L. Masengo, J. Mulopo, Synthesis and performance evaluation
of adsorbents derived from sewage sludge blended with waste
coal for nitrate and methyl red removal, Sci. Rep., 12 (2022)
1–22.
- J.-P. Cao, L.-Y. Li, K. Morishita, X.-B. Xiao, X.-Y. Zhao, X.-Y. Wei,
T. Takarada, Nitrogen transformations during fast pyrolysis of
sewage sludge, Fuel, 104 (2013) 1–6.
- M. Grube, J.G. Lin, P.H. Lee, S. Kokorevicha, Evaluation
of sewage sludge-based compost by FT-IR spectroscopy,
Geoderma, 130 (2006) 324–333.
- L. Remenárová, M. Pipíška, M. Horník, M. Rozložník,
J. Augustín, J. Lesný, Biosorption of cadmium and zinc by
activated sludge from single and binary solutions: mechanism,
equilibrium and experimental design study, J. Taiwan Inst.
Chem. Eng., 43 (2012) 433–443.
- V. Réveillé, L. Mansuy, É. Jardé, É. Garnier-Sillam,
Characterisation of sewage sludge-derived organic matter:
lipids and humic acids, Org. Geochem., 34 (2003) 615–627.
- D.F. Lawler, Y.J. Chung, S.-J. Hwang, B.A. Hull, Anaerobic
digestion: effects on particle size and dewaterability, J. Water
Pollut. Control Fed., 58 (1986) 1107–1117.
- B. Udvardi, I.J. Kovács, T. Fancsik, P. Kónya, M. Bátori, F. Stercel,
G. Falus, Z. Szalai, Effects of particle size on the attenuated total
reflection spectrum of minerals, Appl. Spectrosc., 71 (2017)
1157–1168.