References

  1. B. Jin, B.-M. Wilén, P. Lant, A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge, Chem. Eng. J., 95 (2003) 221–234.
  2. R. Kocwa-Haluch, T. Woźniakiewicz, Analiza mikroskopowa osadu czynnego i jej rola w kontroli procesu technologicznego oczyszczania ścieków (Microscopic analysis of activated sludge and its role in control of technological process of wastewater treatment), Tech. Trans. Environ. Eng., 108 (2011) 141–162.
  3. M.S. Elliot, Impacts of Operating Parameters on Extracellular Polymeric Substances Production in a High Rate Activated Sludge System Substances Production in a High Rate Activated Sludge System with Low Solids Retention Times, Master’s Thesis, Old Dominion University, Norfolk, 2016, doi: 10.25777/5mmx-c139.
  4. V.K. Tyagi, S.-L. Lo, Sludge: a waste or renewable source for energy and resources recovery?, Renewable Sustainable Energy Rev., 25 (2013) 708–728.
  5. A. Demirbas, G. Edris, W.M. Alalayah, Sludge production from municipal wastewater in sewage treatment plant, Energy Sources Part A, 39 (2017) 999–1006.
  6. K. Hagos, J. Zong, D. Li, C. Liu, X. Lu, Anaerobic co-digestion process for biogas production: progress, challenges and perspectives, Renewable Sustainable Energy Rev., 76 (2017) 1485–1496.
  7. L. Appels, J. Baeyens, J. Degrève, R. Dewil, Principles and potential of the anaerobic digestion of
    waste-activated sludge, Prog. Energy Combust. Sci., 34 (2008) 755–781.
  8. A.M. Anielak, A. Kłeczek, Humus acids in the digested sludge and their properties, Materials, 15 (2022) e1475, doi: 10.3390/ ma15041475.
  9. M. Kowalski, K. Kowalska, J. Wiszniowski, J. Turek-Szytow, Qualitative analysis of activated sludge using FT-IR technique, Chem. Pap., 72 (2018) 2699–2706.
  10. P. Wiercik, B. Frączek, P. Chrobot, Fouling of anion exchanger by image and FTIR analyses, J. Environ. Chem. Eng., 8 (2020) e103761, doi: 10.1016/j.jece.2020.103761.
  11. L.C. Go, W. Holmes, D. Depan, R. Hernandez, Evaluation of extracellular polymeric substances extracted from waste activated sludge as a renewable corrosion inhibitor, Peer J., 7 (2019) e7193, doi: 10.7717/peerj.7193.
  12. Y. Liu, W. Lv, Z. Zhang, S. Xia, Influencing characteristics of short-time aerobic digestion on spatial distribution and adsorption capacity of extracellular polymeric substances in waste activated sludge, RSC. Adv., 8 (2018) 32172–32177.
  13. T. Liu, Y. Guo, N. Peng, Q. Lang, Y. Xia, C. Gai, Z. Liu, Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar, J. Anal. Appl. Pyrolysis, 126 (2017) 298–306.
  14. E. Feki, A. Battimelli, S. Sayadi, A. Dhouib, S. Khoufi, High-rate anaerobic digestion of waste activated sludge by integration of electro-Fenton process, Molecules, 25 (2020) e626, doi: 10.3390/ molecules25030626.
  15. S. Yildiz, A. Cӧmert, Fenton process effect on sludge disintegration, Int. J. Environ. Health Res., 30 (2020) 89–104.
  16. P. Wiercik, K. Matras, E. Burszta-Adamiak, M. Kuśnierz, Analysis of the properties and particle size distribution of spent filter backwash water from groundwater treatment at various stages of filter washing, Eng. Prot. Environ., 19 (2016) 149–161.
  17. M. Kuśnierz, Scale of small particle population in activated sludge flocs, Water Air Soil Pollut., 229 (2018) e327, doi: 10.1007/s11270-018-3979-7.
  18. W. Burger, K. Krysiak-Baltyn, P.J. Scales, G.J. Martin, A.D. Stickland, S.L. Gras, The influence of protruding filamentous bacteria on floc stability and solid–liquid separation in the activated sludge process, Water Res, 123 (2017) 578–585.
  19. M. Xie, C. Wang, X. Liu, R. Xiong, Y. Xu, Characteristics of biochemical and fractal structure of activated sludge with thermochemical lysis, Water Air Soil Pollut., 228 (2017) e187, doi: 10.1007/s11270-017-3351-3.
  20. M. Kuśnierz, P. Wiercik, Analysis of particle size and fractal dimensions of suspensions contained in raw sewage, treated sewage and activated sludge, Arch. Environ. Prot., 42 (2016) 67–76.
  21. Y. Fan, X. Ma, X. Dong, Z. Feng, Y. Dong, Characterisation of floc size, effective density and sedimentation under various flocculation mechanisms, Water Sci. Technol., 82 (2020) 1261–1271.
  22. Z. Li, P. Lu, D. Zhang, F. Song, Simulation of floc size distribution in flocculation of activated sludge using population balance model with modified expressions for the aggregation and breakage, Math. Probl. Eng., 2019 (2019) 5243860, doi: 10.1155/2019/5243860.
  23. Z.-H. Li, Y. Guo, Z.-Y. Hang, T. Zhang, H.-Q. Yu, Simultaneous evaluation of bioactivity and settleability of activated sludge using fractal dimension as an intermediate variable, Water Res., 178 (2020) e115834, doi:10.1016/j.watres.2020.115834.
  24. Q. Dai, X. Jiang, G. Lv, X. Ma, Y. Jin, F. Wang, Y. Chi, J. Yan, Investigation into particle size influence on PAH formation during dry sewage sludge pyrolysis: TG-FTIR analysis and batch scale research, J. Anal. Appl. Pyrolysis, 112 (2015) 388–393.
  25. L. Yan, Y. Liu, Y. Wen, Y. Ren, G. Hao, Y. Zhang, Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen, Bioresour. Technol., 179 (2015) 460–466.
  26. D.L. Black, M.Q. McQuay, M.P. Bonin, Laser-based techniques for particle-size measurement: a review of sizing methods and their industrial applications, Prog. Energy Combust., 22 (1996) 267–306.
  27. Malvern Instruments Ltd., Basic Principles of Particle Size Analysis. Available at: https://www.atascientific.com.au/ wp-content/uploads/2017/02/AN020710-Basic-Principles- Particle-Size-Analysis.pdf, (Accessed 14 December 2021).
  28. P.J. Arauzo, M. Atienza-Martínez, J. Ábrego, M.P. Olszewski, Z. Cao, A. Kruse, Combustion characteristics of hydrochar and pyrochar derived from digested sewage sludge, Energies, 13 (2020) e4164, doi:10.3390/en13164164.
  29. J.L. Masengo, J. Mulopo, Synthesis and performance evaluation of adsorbents derived from sewage sludge blended with waste coal for nitrate and methyl red removal, Sci. Rep., 12 (2022) 1–22.
  30. J.-P. Cao, L.-Y. Li, K. Morishita, X.-B. Xiao, X.-Y. Zhao, X.-Y. Wei, T. Takarada, Nitrogen transformations during fast pyrolysis of sewage sludge, Fuel, 104 (2013) 1–6.
  31. M. Grube, J.G. Lin, P.H. Lee, S. Kokorevicha, Evaluation of sewage sludge-based compost by FT-IR spectroscopy, Geoderma, 130 (2006) 324–333.
  32. L. Remenárová, M. Pipíška, M. Horník, M. Rozložník, J. Augustín, J. Lesný, Biosorption of cadmium and zinc by activated sludge from single and binary solutions: mechanism, equilibrium and experimental design study, J. Taiwan Inst. Chem. Eng., 43 (2012) 433–443.
  33. V. Réveillé, L. Mansuy, É. Jardé, É. Garnier-Sillam, Characterisation of sewage sludge-derived organic matter: lipids and humic acids, Org. Geochem., 34 (2003) 615–627.
  34. D.F. Lawler, Y.J. Chung, S.-J. Hwang, B.A. Hull, Anaerobic digestion: effects on particle size and dewaterability, J. Water Pollut. Control Fed., 58 (1986) 1107–1117.
  35. B. Udvardi, I.J. Kovács, T. Fancsik, P. Kónya, M. Bátori, F. Stercel, G. Falus, Z. Szalai, Effects of particle size on the attenuated total reflection spectrum of minerals, Appl. Spectrosc., 71 (2017) 1157–1168.