References

  1. S.N. Rai, G.N. Tiwari, Single basin solar still coupled with flat plate collector, Energy Convers. Manage., 23 (1983) 145–149.
  2. G.N. Tiwari, NK. Dhiman, Performance study of a high temperature distillation system, Energy Convers. Manage., 32 (1991) 283–291.
  3. S.A. Lawrence, G.N. Tiwari, Theoretical evaluation of solar distillation under natural circulation with heat exchanger, Energy Convers. Manage., 30 (1990) 205–213.
  4. O.A. Hamadou, K. Abdellatif, Modeling an active solar still for sea water desalination process optimization, Desalination, 354 (2014) 1–8.
  5. C. Tiris, M. Tiris, Y. Erdalli, M. Sohmen, Experimental studies on a solar still coupled with a flat plate collector and a single basin still, Energy Convers. Manage., 39 (1998) 853–856.
  6. O.O. Badran, H.A. Al-Tahaineh, The effect of coupling flat plate collector on the solar still productivity, Desalination, 183 (2004) 137–142.
  7. R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination, 173 (2005) 187–200.
  8. A.A. Badran, A.A. Al-Hallaq, I.A. Eyal Salman, M.Z. Odat, A solar still augmented with a flat-plate collector, Desalination, 172 (2005) 227–234.
  9. A.J.N. Khalifa, A.M. Hamood, On the verification of the effect of water depth on the performance of basin type solar stills, Sol. Energy, 83 (2009) 1312–1321.
  10. H. Taghvaei, H. Taghvaei, J. Khosrow, M.R. Karimi Estahbanati, M. Feilizadeh, M. Feilizadeh, A. Seddigh Ardekani, A thorough investigation of the effects of water depth on the performance of active solar stills, Desalination, 347 (2014) 77–85.
  11. F. Saeedi, F. Sarhaddi, A. Behzadmehr, Optimization of a PV/T (photovoltaic/thermal) active solar still, Energy, 87 (2015) 142–152.
  12. L. Sahota, G.N. Tiwari, Advanced Solar-Distillation Systems: Basic Principles, Thermal Modeling, and Its Application, Springer, Singapore, 2017.
  13. M. Veeramanikandan, T.V. Arjunan, N. Gunasekar, Numerical simulation and experimental validation of a novel sandwich glazed photovoltaic thermal (SGPV/T) water heating system, Energy Sources, Part A, (2021), doi: 10.1080/15567036.2021.1945711.
  14. S. Kumar, A Tiwari, Design, fabrication, and performance of a hybrid photovoltaic/thermal (PVT) active solar still, Energy Convers. Manage., 51 (2010) 1219–1229.
  15. G.N. Tiwari, J.K. Yadav, D.B. Singh, I.M. Al-Helal, A.M. Abdel-Ghany, Exergoeconomic and enviroeconomic analyses of partially covered photovoltaic flat plate collector active solar distillation system, Desalination, 367 (2015) 186–196.
  16. D.B. Singh, J.K. Yadav, V.K. Dwivedi, S. Kumar, G.N. Tiwari, I.M. Al-Helal, Experimental studies of active solar still integrated with two hybrid PVT collectors, Sol. Energy, 30 (2016) 207–223.
  17. M. Feilizadeh, M.R.K. Estahbanati, A. Ahsan, K. Jafarpur, A. Mersaghian, Effects of water and basin depths in single basin solar stills: an experimental and theoretical study, Energy Convers. Manage., 122 (2016) 174–181.
  18. A.E. Kabeel, R. Sathyamurthy, S.W. Sharshir, A. Muthumanokar, H. Panchal, N. Prakash, C. Prasad,
    S. Nandakumar, M.S. El Kady, Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint, J. Cleaner Prod., 213 (2018) 185–191.
  19. A.E. Kabeel, S.W. Sharshir, G.B. Abdelaziz, M.A. Halim, A. Swidan, Improving performance of tubular solar still by controlling the water depth and cover cooling, J. Cleaner Prod., 233 (2019) 848–856.
  20. R.J. Issa, B. Chang, Performance study on evacuated tubular collector coupled solar still in West Texas climate, Int. J. Green Energy, 14 (2018) 793–800.
  21. D.B. Singh, Improving the performance of single slope solar still by including N identical PVT collectors, Appl. Therm. Eng., 131 (2018) 167–179.
  22. D.B Singh, Energy metrics analysis of N identical evacuated tubular collectors integrated single slope solar still, Energy, 148 (2018a) 546–560.
  23. M. Fathy, H. Hassan, M.S. Ahmed, Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance, Sol. Energy, 163 (2018) 54–61.
  24. D.B. Singh, G.N. Tiwari, Analytical characteristic equation of N identical evacuated tubular collectors integrated double slope solar still, J. Sol. Energy Eng. Trans. ASME, 135 (2017) 051003 (1–11), doi: 10.1115/1.4036855.
  25. R. Kumar, R. Sharma, D. Kumar, A.R. Singh, D.B. Singh, G.N Tiwari, Characteristic equation development for single-slope solar distiller unit augmented with N identical parabolic concentrator integrated evacuated tubular collectors, J. Sol. Energy Eng. Trans. ASME, 142 (2020) 021011 (1–11), doi: 10.1115/1.4045314.
  26. H. Prasad, P. Kumar, R.K. Yadav, A. Mallick, N. Kumar, D.B. Singh, Sensitivity analysis of N identical partially covered (50%) PVT compound parabolic concentrator collectors integrated double slope solar distiller unit, Desal. Water Treat., 153 (2019) 54–64.
  27. D.B. Singh, N. Kumar, Harender, S. Kumar, S.K. Sharma, A. Mallick, Effect of depth of water on various efficiencies and productivity of N identical partially covered PVT collectors incorporated single slope solar distiller unit, Desal. Water Treat., 138 (2019) 99–112.
  28. D.B. Singh, G. Bansal, H. Prasad, A. Mallick, N. Kumar, S.K. Sharma, Sensitivity analysis of N undistinguishable photovoltaic thermal compound-parabolic-concentrator collectors (partly covered, 50%) integrated single-slope solar distiller unit, J. Sol. Energy Eng. Trans. ASME, 143 (2020) 021003 (1–11), doi: 10.1115/1.4048012.
  29. A.M. Manokar, Y. Taamneh, A.E. Kabeel, W.D. Prince, P. Vijayabalan, D. Balaji, R. Sathyamurthy, S.S. Padmanaba, D. Mageshbabu, Effect of water depth and insulation on the productivity of an acrylic pyramid solar still – an experimental study, Groundwater Sustainable Dev., 10 (2020) 100319, doi: 10.1016/j.gsd.2019.100319.
  30. K.V. Modi, K.H. Nayi, S.S. Sharma, Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector, Groundwater Sustainable Dev., 10 (2020) 100299, doi:10.1016/j.gsd.2019.100299.
  31. K.V. Modi, D.L. Shukla, D.B. Ankoliya, A comparative performance study of double basin single slope solar still with and without using nanoparticles, J. Sol. Energy Eng. Trans. ASME, 141 (2019) 031008 (10 p.), doi:10.1115/1.4041838.
  32. A.E. Kabeel, A.M. Manokar, R. Sathyamurthy, D.P. Winston, S.A. El-Agouz, A.J. Chamkha, A review on different design modifications employed in inclined solar still for enhancing the productivity, J. Sol. Energy Eng. Trans. ASME, 141 (2019) 031007 (10 pages), doi: 10.1115/1.4041547.
  33. P. Pal, R. Dev, Thermal modeling, experimental validation, and comparative analysis of modified solar stills, J. Sol. Energy Eng. Trans. ASME, 141 (2019) 061013 (16 pages), doi: 10.1115/1.4043955.
  34. A.C. Groenewoudt, H.K. Romijn, F. Alkemade, From fake solar to full service: an empirical analysis of the solar home systems market in Uganda, Energy Sustainable Dev., 58 (2020) 100–111.
  35. H. Ye, Y. Zheng, H. Zheng, S. Liang, Sustainable agriculture irrigation system using a novel solar still design with a compound parabolic concentrator reflector, J. Sol. Energy Eng. Trans. ASME, 142 (2020) 031010 (7 p.), doi: 10.1115/1.4045826.
  36. P.M. Sivaram, S.D. Kumar, M. Premalatha, T. Sivasankar, A. Arunagiri, Experimental investigation on airflow and water production in the integrated rooftop solar thermal system, J. Sol. Energy Eng. Trans. ASME, 142 (2020) 031006 (15 p.), doi: 10.1115/1.4045738.
  37. K. Mohammadi, H. Taghvaei, E.G. Rad, Experimental investigation of a double slope active solar still: effect of a new heat exchanger design performance, Appl. Therm. Eng., 180 (2020) 115875, doi:10.1016/j.applthermaleng.2020.115875.
  38. R. Fallahzadeh, A. Aref, V.M. Avargani, N. Gholamiarjenaki, An experimental investigation on the performance of a new portable active bubble basin solar still, Appl. Therm. Eng., 181 (2020) 115918, doi:10.1016/j.applthermaleng.2020.115918.
  39. F.A. Essa, M.A. Elaziz, A.H. Elsheikh, An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer, Appl. Therm. Eng., 170 (2020) 115020, doi:10.1016/j.applthermaleng.2020.115020.
  40. O.D. Maliani, A. Bekkaoui, E.H. Baali, K. Guissi, Y. El Fellah, R. Errais, Investigation on novel design of solar still coupled with two axis solar tracking system, Appl. Therm. Eng., 172 (2020) 115144, doi:10.1016/j.applthermaleng.2020.115144.
  41. V.S. Gupta, D.B. Singh, S.K. Sharma, N. Kumar, T.S. Bhatti, G.N. Tiwari, Modeling self-sustainable fully-covered photovoltaic thermal-compound parabolic concentrators connected to double slope solar distiller, Desal. Water Treat., 190 (2020) 12–27.
  42. K. Bharti, S. Manwal, C. Kishore, R.K. Yadav, P. Tiwari, D.B. Singh, Sensitivity analysis of N alike partly covered PVT flat plate collectors integrated double slope solar distiller unit, Desal. Water Treat., 211 (2021) 45–59.
  43. S.K. Sharma, A. Mallick, D.B. Singh, G.N. Tiwari, Experimental study of solar energy–based water purifier of single-slope type by incorporating a number of similar evacuated tubular collectors, Environ. Sci. Pollut. Res., 29 (2022) 6837–6856.
  44. D. Purnachandrakumar, G. Mittal, R.K. Sharma, D.B. Singh, S. Tiwari, H. Sinhmar, Review on performance assessment of solar stills using computational fluid dynamics (CFD), Environ. Sci. Pollut. Res., 29 (2022) 38673–38714.
  45. D. Kumar, R.K. Sharma, D.B. Singh, Effect of variation of massflow- rate and number of collectors on performance of active solar still, Desal. Water Treat., 248 (2022) 1–17.
  46. A. Raturi, R. Dobriyal, R.K. Sharma, A. Dwivedi, S.P. Singh, D.B. Singh, An investigation of effect of mass flow rate variation on productivity, exergoeconomic and enviroeconomic parameters on N similar PVTCPCs included with double slope solar still, Desal. Water Treat., 244 (2021) 12–26.
  47. V.S. Gupta, D.B. Singh, R.K. Mishra, S.K. Sharma, G.N. Tiwari, Development of characteristic equations for PVT-CPC active solar distillation system, Desalination, 445 (2018) 266–279.
  48. Shyam, G.N. Tiwari, I.M. Al-Helal, Analytical expression of temperature dependent electrical efficiency of N-PVT water collectors connected in series, Sol. Energy, 114 (2015) 61–76.
  49. D.B. Singh, G.N. Tiwari, Enhancement in energy metrics of double slope solar still by incorporating N identical PVT collectors, Sol. Energy, 143 (2017) 142–161.
  50. D.B. Singh, V.K. Dwivedi, G.N. Tiwari, N. Kumar, Analytical characteristic equation of N identical evacuated tubular collectors integrated single slope solar still, Desal. Water Treat., 88 (2017) 41–51.
  51. P.I. Cooper, Digital simulation of experimental solar still data, Sol. Energy, 14 (1973) 451–456.
  52. R.V. Dunkle, Solar Water Distillation, The Roof Type Solar Still and Multi-Effect Diffusion Still, International Developments in Heat Transfer, A.S.M.E., Proceedings of International Heat Transfer, Part V, University of Colorado, 1961, p. 895.
  53. P.K. Nag, Basic and Applied Thermodynamics, Tata McGraw- Hill, 2004, ISBN: 0-07-047338-2.
  54. D.B. Singh, Exergoeconomic and enviroeconomic analyses of N identical photovoltaic thermal integrated double slope solar still, Int. J. Exergy, 23 (2017) 347–366.
  55. D.B. Singh, N. Kumar, S. Kumar, V.K. Dwivedi, J.K. Yadav, G.N. Tiwari, Enhancement in exergoeconomic and enviroeconomic parameters for single slope solar still by incorporating N identical partially covered photovoltaic collectors, J. Sol. Energy Eng. Trans. ASME, 140 (2018) 051002 (1–18), doi: 10.1115/1.4039632.
  56. Shyam, G.N. Tiwari, O. Fischer, R.K. Mishra, I.M. Al-Helal, Performance evaluation of N-photovoltaic thermal (PVT) water collectors partially covered by photovoltaic module connected in series: an experimental study, Sol. Energy, 134 (2016) 302–313.
  57. V.K. Dwivedi, G.N. Tiwari, Comparison of internal heat transfer coefficients in passive solar stills by different thermal models: an experimental validation, Desalination, 246 (2009) 304–318.
  58. D.B. Singh, G.N. Tiwari, Performance analysis of basin type solar stills integrated with N identical photovoltaic thermal (PVT) compound parabolic concentrator (CPC) collectors: a comparative study, Sol. Energy, 142 (2017) 144–158.
  59. D.B. Singh, N. Kumar, Harender, S. Kumar, S.K. Sharma, A. Mallick, Effect of depth of water on various efficiencies and productivity of N identical partially covered PVT collectors incorporated single slope solar distiller unit, Desal. Water Treat., 138 (2019) 99–112.
  60. G.N. Tiwari, Solar Energy, Fundamentals, Design, Modeling and Application, Narosa Publishing House, New Delhi, 2013.
  61. R. Petela, Exergy of undiluted thermal radiation, Sol. Energy, 74 (2003) 469–488.
  62. International Labor Office, Introduction to Work Study, International Labor Organization, Geneva,
    ISBN 81-204-0602-8, 1979.
  63. D.B. Singh, G.N. Tiwari, I.M. Al-Helal, V.K. Dwivedi, J.K. Yadav, Effect of energy matrices on life cycle cost analysis of passive solar stills, Sol. Energy, 134 (2016) 9–22.
  64. D.B. Singh, J.K. Yadav, V.K. Dwivedi, S. Kumar, G.N. Tiwari, I.M. Al-Helal, Experimental studies of active solar still integrated with two hybrid PVT collectors, Sol. Energy, 130 (2016) 207–223.