References
- V. Memet, S. Bülent, Assessment of nutrient and heavy metal
contamination in surface water and sediments of the upper
Tigris River, Turkey, CATENA, 92 (2012) 1–10.
- D. Daby, Coastal pollution and potential biomonitors of metals
in Mauritius, Water, Air, Soil Pollut., 174 (2006) 63–91.
- H. Huang, J.Y. Wu, J.H. Wu, Heavy metal monitoring using
bivalved shellfish from Zhejiang coastal waters, East China Sea,
Environ. Monit. Assess., 129 (2007) 315–320.
- J.V. Rao, P. Kavitha, K. Srikanth, P.K. Usman, T.G. Rao,
Environmental contamination using accumulation of metals
in marine sponges, Sigmadocia fibulata inhabiting the coastal
waters of Gulf of Mannar, India, Toxicol. Environ. Chem.,
89 (2007) 487–498.
- K. Sultan, A.S. Noor, P. Stefan, Distribution of Pb, As, Cd, Sn
and Hg in soil, sediment and surface water of the tropical river
watershed, Terengganu (Malaysia), J. Hydro-Environ. Res.,
5 (2011) 169–176.
- C. Diop, D. Dewaele, A. Toure, M. Cabral, F. Cazier, M. Fall,
B. Ouddane, A. Diouf, Study of sediment contamination by
trace metals at wastewater discharge points in Dakar (Senegal),
J. Water. Sci., 25 (2012) 277–285.
- G. Xuelu, C. Chen-Tung, Heavy metal pollution status in
surface sediments of the coastal Bohai Bay, Water Resour. J.,
46 (2012) 1901–1911.
- J.S. Ahn, Y.S. Park, J.Y. Kim, K.W. Kim, Mineralogical and
geochemical characterization of arsenic in an abandoned mine
tailings of Korea, Environ. Geochem. Health, 27 (2005) 147–157.
- M.R. Lee, J.A. Correa, Effect of copper mine tailings disposal
on littoral meiofaunal assemblages in the Atacama region of
Northern Chile, Mar. Environ. Res., 59 (2005) 1–18.
- A.N. Roychoudhury, M.F. Starke, Partitioning and mobility
of trace metals in the Blesbokspruit: impact assessment of
dewatering of mine waters in the East Rand, South Africa,
Appl. Geochem., 21 (2006) 1044–1063.
- R. D’adamo, M. Di Stasio, A. Fabbrochini, Migratory crustaceans
as biomonitors of metal pollution in their nursery areas. The
Lesina Lagoon (SE Italy) as a case study, Environ. Monit.
Assess., 143 (2008) 15–24.
- R. Smolders, L. Bervoets, V. Wepener, R. Blust, A conceptual
framework for using mussels as biomonitors in whole efflent
toxicity, Hum. Ecol. Risk Assess., 9 (2003) 741–760.
- A.L. Gonçalves, C.M. Pires-Jose, M. Simões, A review on the use
of microalgale consortia for wastewater treatment, Algal Res.,
24 (2017) 403–415.
- B. Olfa, Wastewater Treatment in Multitrophic Bioreactors
Using Bacterial Microalgae Flocs Recoverable as Biogas, Thesis
Jointly Supervised by the University of Carthage (Tunisia)
and the University of Lorraine (France), Domain: Engineering
of Processes and Products and Molecules, Doctoral Schools,
Sciences and Engineering of Molecules, Processes, Products
and Energy and Sciences and Technologies for Engineers,
INSAT, 2018.
- C.D. Calvano, F. Italiano, L. Catucci, A. Agostiano, T.R.I. Cataldi,
F. Palmisano, M. Trotta, The lipidome of the photosynthetic
bacterium Rhodobacter sphaeroides R26 is affected by cobalt and
chromate ions stress, Biometals: An Int. J. Role Metal Ions Biol.
Biochem. Med., 27 (2014) 65–73.
- M. Aryal, M. Liakopoulou-Kyriakides, Bioremoval of heavy
metals by bacterial biomass, Environ. Monit. Assess., 187 (2015)
1–26.
- M. CorraL-Bobadilla, A. Gonzalez-Marcos, E. Vergara-Gonzalez, F. Alba-Elias, Bioremediation of waste water to
remove heavy metals using the spent mushroom substrate of
Agaricus bisporus, Water, 11 (2019) 454–468.
- M. Fazlzadeh, R. Khosravi, A. Zarei, Green synthesis of zinc
oxide nanoparticles using Peganum harmala seed extract, and
loaded on Peganum harmala seed powdered activated carbon
as new adsorbent for removal of Cr(VI) from aqueous solution,
Ecol. Eng., 103 (2017) 180–190.
- I. Gajda, A. Stinchcombe, J. Greenman, C. Melhuish,
I. Ieropoulos, Microbial fuel cell: a novel self-powered wastewater
electrolyser for electrocoagulation of heavy metals, Int. J.
Hydrogen Energy, 42 (2017) 1813–1819.
- E. Daneshvar, R.J. Wicker, P.L. Show, A. Bhatnagar,
Biologically-mediated carbon capture and utilization by
microalgae towards sustainable CO2 biofixation and biomass
valorization – a review, Chem. Eng. J., 427 (2022) 130884, doi:
10.1016/j.cej.2021.130884.
- G. Sibi, Factors influencing heavy metal removal by microalgae-a
review, J. Crit. Rev., 6 (2019) 29–32.
- A.J. Bora, R.K. Dutta, Removal of metals (Pb, Cd, Cu, Cr,
Ni, and Co) from drinking water by oxidation-coagulationabsorption
at optimized pH, J. Water Process Eng., 31 (2019)
100839, doi:10.22159/jcr.2019v6i6.35600.
- T. Kim, T.-K. Kim, K.-D. Zoh, Removal mechanism of heavy
metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during
electrocoagulation using Fe and Al electrodes, J. Water Process
Eng., 33 (2020) 101109, doi: 10.1016/j.jwpe.2019.101109.
- S.N. Francoeur, S.T. Rier, S.B. Whorley, In: J.T. Anderson,
C.A. Davis, Eds., Methods for Sampling and Analyzing Wetland
Algae Steven, Wetland Techniques, Volume 2: Organisms,
Springer Science+Business Media, Dordrecht, 2013, pp. 1–58.
- E.G. Bellinger, D.C. Sigee, A Key to the More Frequently
Occurring Freshwater Algae, Freshwater Algae: Identification
and Use as Bioindicators, John Wiley & Sons, Ltd., Hoboken,
2010, pp. 137–244.
- N. Serediak, M.-L. Huynh, Algae Identification - Field Guide:
An Illustrative Field Guide on Identifying Common Algae
Found in the Canadian Prairies, Agriculture and Agri-Food,
Agri-Environment Services Branch, Canada, 2011.
- S. Van Vuuren, J.C. Taylor, A. Gerber, C. Van Ginkel, Easy
Identification of the Most Common Freshwater Algae, North-West University and Department of Water Affairs and Forestry,
Pretoria, South Africa, 2006, pp. 1–200.
- H. Canter-Lund, J.W.G. Lund, Freshwater Algae: Their
Microscopic World Explored (1995) (No. 582.26 CAN).
- K. Bajwa, N.R. Bishnoi, A. Kirrolia, J. Sharma, S. Gupta,
Comparison of various growth media composition for physiobiochemical
parameters of biodiesel producing microalgal
species (Chlorococcum aquaticum, Scenedesmus obliquus,
Nannochloropsis oculata and Chlorella pyrenoidosa), Eur. J.
Biotechnol. Biosci., 5 (2017) 27–31.
- K. Ga-Yeong, R. Kosan, H. Jong-In, The use of bicarbonate for
microalgae cultivation and its carbon footprint analysis, Green
Chem., 21 (2019) 5053–5062.
- A. Verma, M. Agarwal, S. Sharma, N. Singh, Competitive
removal of cadmium and lead ions from synthetic wastewater
using Kappaphycus striatum, Environ. Nanotechnol. Monit.
Manage., 15 (2021) 100449, doi:10.1016/j.enmm.2021.100449.
- S. Li, S. Li, N. Wen, D. Wei, Y. Zhang, Highly effective removal
of lead and cadmium ions from wastewater by bifunctional
magnetic mesoporous silica, Sep. Purif. Technol., 265 (2021)
118341, doi:10.1016/j.seppur.2021.118341.
- M. Oves, M.S. Khan, A. Zaidi, Biosorption of heavy metals by
Bacillus thuringiensis strain OSM29 originating from industrial
effluent contaminated north Indian soil, Saudi J. Biol. Sci.,
20 (2013) 121–129.
- R.R.L. Guillard, ‘Division Rates’, J.R. Stein, Ed., Handbook
of Phycological Methods: Culture Methods and Growth
Measurements, Cambridge University Press, London, 1973,
pp. 289–311.
- P.S. Chandrashekharaiah, D. Sanyal, S. Dasgupta, A. Banik,
Cadmium biosorption and biomass production by two
freshwater microalgae Scenedesmus acutus and Chlorella
pyrenoidosa: an integrated approach, Chemosphere, 269 (2021)
128755, doi: 10.1016/j.chemosphere.2020.128755.
- D.L. Findlay, S.E.M. Kasian, L.L. Hendzel, G.W. Regehr, E.U.
Schindler, J.A. Shearer, Biomanipulation of Lake 221 in the
experimental lakes area (ELA): effects on phytoplankton and
nutrients, Can. J. Fish Aquat. Sci., 51 (1994) 2794–2807.
- S. Li, Y. Yu, X. Gao, Z. Yin, J. Bao, Z. Li, R. Chu, D. Hu, J. Zhang,
L. Zhu, Evaluation of growth and biochemical responses
of freshwater microalgae Chlorella vulgaris due to exposure
and uptake of sulfonamides and copper, Bioresour. Technol.,
342 (2021) 126064, doi: 10.1016/j.biortech.2021.126064.
- J. Hockaday, A. Harvey, S. Velasquez-Orta, A comparative
analysis of the adsorption kinetics of Cu2+ and Cd2+ by the
microalgae Chlorella vulgaris and Scenedesmus obliquus. Algal
Res., 64 (2022) 102710, doi: 10.1016/j.algal.2022.102710.
- S. Morin, T.T. Duong, A. Dabrin, A. Coynel, O. Herlory,
M. Baudrimont, F. Delmas, G. Durrieu, J. Schäfer,
P. Winterton,
G. Blanc, M. Coste, Long-term survey of heavy-metal pollution,
biofilm contamination and diatom community structure in
the Riou Mort watershed, South-West France, Environ Pollut.,
151 (2008) 532–542.
- S. Morin, N. Gómez, E. Tornés, M. Licursi, J. Rosebery,
Benthic Diatom Monitoring and Assessment of Freshwater
Environments: Standard Methods and Future Challenges,
A.M. Romaní, H. Guasch,
M. Dolors Balaguer, Eds., Aquatic
Biofilms: Ecology, Water Quality and Wastewater Treatment,
Caister Academic Press, UK, 2016, pp. 111–124.
- N. Chaib, S. Dzizi, H. Kaddeche, F. Noune, Performance of a
fixed‐bed bioreactor using diatom biofilms for wastewater
bioremediation, Clean-Soil, Air, Water, 49 (2021) 2000282,
doi: 10.1002/clen.202000282.
- A. Tiwari, T.K. Marella, Potential and Application of Diatoms
for Industry-Specific Wastewater Treatment,
S.K. Gupta, F. Bux,
Eds., Application of Microalgae in Wastewater Treatment,
Springer, Cham, 2019, pp. 321–339.
- S. Dwivedi, Bioremediation of heavy metal by algae: current
and future perspective, J. Adv. Lab. Res. Biol., 3 (2012) 195–199.
- A.K. Zeraatkar, H. Ahmadzadeh, A.F. Talebi, N.R. Moheimani,
M.P. McHenry, Potential use of algae for heavy metal
bioremediation, a critical review, J. Environ. Manage.,
181 (2016) 817–831.
- B. Volesky, Biosorption of Heavy Metals, 1st ed., Published
Auguesr 15, CRC Press, Boca Raton, 1990, 408 p.
- G.M. Gadd, Heavy metal accumulation by bacteria and other
microorganisms, Experientia, 46 (1990) 834–840.
- S.K. Mehta, J.K. Gaur, Characterisation and optimization of Ni
and Cu sorption from aqueous solution by Chlorella vulgaris,
Ecol. Eng., 18 (2001) 1–13.
- R. Dixit, D. Malaviya, K. Pandiyan, U.B. Singh, A. Sahu,
R. Shukla, D. Paul, Bioremediation of heavy metals from soil
and aquatic environment: an overview of principles and criteria
of fundamental processes, Sustainability, 7 (2015) 2189–2212.
- N.F.Y. Tam, J.P.K. Wong, Y.S. Wong, Repeated use of two Chlorella
species, C. vulgaris and WW1 for cyclic nickel biosorption,
Environ. Pollut., 114 (2001) 85–92.
- C.A. Mahan, V. Majidi, J.A. Holcombe, Evaluation of the metal
uptake of several algae strains in a multicomponent matrix
utilizing inductively coupled plasma emission spectrometry,
Anal. Chem., 61 (1989) 624–627.
- P.R. Pascucci, A.D. Kowalak, Public health benefits of using
algae for simultaneous multiple metal extraction from waters,
Rev. Environ. Health, 11 (1996) 205–212.
- Z. Lin, J. Li, Y. Luan, W. Dai, Application of algae for heavy
metal adsorption: a 20-year meta-analysis, Ecotoxicol. Environ.
Saf., 190 (2020) 110089, doi: 10.1016/j.ecoenv.2019.110089.
- E. El-Bestawy, Efficiency of immobilized cyanobacteria in heavy
metals removal from industrial effluents, Desal. Water Treat.,
159 (2019) 66–78.
- L. Travieso, R.O. Canizares, R. Borja, F. Benıtez, A.R. Domınguez,
R. Dupeyron, V. Valiente, Heavy metal removal by microalgae,
Bull. Environ. Contamin. Toxicol., 62 (1999) 144–151.
- S. Singh, S. Pradhan, L.C. Rai, Metal removal from single and
multimetallic systems by different biosorbent materials as
evaluated by differential pulse anodic stripping voltammetry,
Process Biochem., 36 (2000) 175–182.
- P.K. Rai, B.D. Tripathi, Removal of heavy metals by the nuisance
cyanobacteria Microcystis in continuous cultures: an ecosustainable
technology, Environ. Sci., 4 (2007) 53–59.
- S. Shanab, A. Essa, E. Shalaby, Bioremoval capacity of three
heavy metals by some microalgae species (Egyptian Isolates),
Plant Signaling Behav., 7 (2012) 1–8.
- U.K. Singh, B. Kumar, Pathways of heavy metals contamination
and associated human health risk in Ajay River basin, India,
Chemosphere, 174 (2017) 183–199.
- M. Danouche, N. El Ghachtouli, H. El Arroussi,
Phycoremediation mechanisms of heavy metals using living
green microalgae: physicochemical and molecular approaches
for enhancing selectivity and removal capacity, Heliyon,
7 (2021) e07609, doi: 10.1016/j.heliyon.2021.e07609.
- R. Piña-Olavide, L.M. Paz-Maldonado, M.C. Alfaro-De La Torre,
M.J. García-Soto, A.E. Ramírez-Rodríguez,
S. Rosales-Mendoza,
R.F. García De la-Cruz, Increased removal of cadmium by
Chlamydomonas reinhardtii modified with a synthetic gene for
γ-glutamylcysteine synthetase, Int. J. Phytorem., 22 (2020)
1269–1277.
- X. Ma, Y. Chen, F. Liu, S. Zhang, Q. Wei, Enhanced tolerance
and resistance characteristics of Scenedesmus obliquus FACHB-12
with K3 carrier in cadmium polluted water, Algal Res., 55 (2021)
102267, doi: 10.1016/j.algal.2021.102267.
- J. Ye, H. Xiao, B. Xiao, W. Xu, L. Gao, G. Lin, Bioremediation of
heavy metal contaminated aqueous solution by using red algae
Porphyra leucosticte, Water Sci. Technol., 72 (2015) 1662–1666.