References
- X. Wang, W. Cui, M. Wang, Y. Liang, G. Zhu, T. Jin, X. Chen, The
association between life-time dietary cadmium intake from rice
and chronic kidney disease, Ecotoxicol. Environ. Saf., 211 (2021)
111933, doi:10.1016/j.ecoenv.2021.111933.
- I. Suhani, S. Sahab, V. Srivastava, R.P. Singh, Impact of cadmium
pollution on food safety and human health, Curr. Opin. Toxicol.,
27 (2021) 1–7, doi: 10.1016/j.cotox.2021.04.004.
- D.L. Knoell, T.A. Wyatt, The adverse impact of cadmium on
immune function and lung host defense, Semin. Cell Dev. Biol.,
115 (2020) 70–76.
- M. Mahmood, M.M. Barbooti, A. Balasim, A. Altameemi,
M.N. Al-Terehi, N. Al-Shuwaiki, Removal of heavy metals using
chemicals precipitation, Eng. Technol. J., 29 (2011) 595–612.
- R. Kumar, J. Chawla, Removal of cadmium ion from water/wastewater by nano-metal oxides: a review, Water Qual.
Exposure Health, 5 (2014) 215–226.
- R. Leyma, S. Platzer, F. Jirsa, W. Kandioller, R. Krachler,
B.K. Keppler, Novel thiosalicylate-based ionic liquids for heavy
metal extractions, J. Hazard. Mater., 314 (2016) 164–171.
- A. Almasian, M. Giahi, G.C. Fard, S.A. Dehdast, L. Maleknia,
Removal of heavy metal ions by modified PAN/PANI-nylon
core-shell nanofibers membrane: filtration performance,
antifouling and regeneration behavior, Chem. Eng. J., 351 (2018)
1166–1178.
- B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review
on various electrochemical techniques for heavy metal ions
detection with different sensing platforms, Biosens. Bioelectron.,
94 (2017) 443–455.
- M.A. Barakat, New trends in removing heavy metals from
industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
- M. Owlad, M.K. Aroua, W.M.A.W. Daud, Hexavalent chromium
adsorption on impregnated palm shell activated carbon with
polyethyleneimine, Bioresour. Technol., 101 (2010) 5098–5103.
- C. Gutiérrez, H.K. Hansen, P. Hernández, C. Pinilla, Biosorption
of cadmium with brown macroalgae, Chemosphere, 138 (2015)
164–169.
- Y. Chen, H. Wang, W. Zhao, S. Huang, Four different kinds
of peels as adsorbents for the removal of Cd(II) from aqueous
solution: kinetics, isotherm and mechanism, J. Taiwan Inst.
Chem. Eng., 88 (2018) 146–151.
- B.B. Palabıyık, H. Selcuk, Y.A. Oktem, Cadmium removal using
potato peels as adsorbent: kinetic studies, Desal. Water Treat.,
172 (2019) 148–157.
- S. Afroze, T.K. Sen, A review on heavy metal ions and
dye adsorption from water by agricultural solid waste
adsorbents, Water Air Soil Pollut., 229 (2018) 225, doi: 10.1007/s11270-018-3869-z.
- D. Purkayastha, U. Mishra, S. Biswas, A comprehensive review
on Cd(II) removal from aqueous solution,
J. Water Process Eng.,
2 (2014) 105–128.
- K. Pyrzynska, Removal of cadmium from wastewaters with
low-cost adsorbents, J. Environ. Chem. Eng., 7 (2019) 102795,
doi: 10.1016/j.jece.2018.11.040.
- P. Sudhakar, I.D. Mall, V.C. Srivastava, Adsorptive removal of
bisphenol-A by rice husk ash and granular activated carbon—a
comparative study, Desal. Water Treat., 57 (2016) 12375–12384.
- V. Vandeginste, Food waste eggshell valorization through
development of new composites: a review, Sustainable Mater.
Technol., 29 (2021) e00317, doi: 10.1016/j.susmat.2021.e00317.
- Y. Feng, B. Ashok, K. Madhukar, J.M. Zhang, J. Zhang, K. Obi
Reddy, A. Varada Rajulu, Preparation and characterization of
polypropylene carbonate bio-filler (eggshell powder) composite
films, Int. J. Polym. Anal. Charact., 19 (2014) 637–647.
- P.S. Katha, Z. Ahmed, R. Alam, B. Saha, A. Acharjee, M. Safiur
Rahman, Efficiency analysis of eggshell and tea waste as low
cost adsorbents for Cr removal from wastewater sample, S. Afr.
J. Chem. Eng., 37 (2021) 186–195.
- S.M. Prabhu, S.S. Elanchezhiyan, G. Lee, A. Khan, S. Meenakshi,
Assembly of nano-sized hydroxyapatite onto graphene oxide
sheets via in-situ fabrication method and its prospective
application for defluoridation studies, Chem. Eng. J., 300 (2016)
334–342, 1385–8947.
- B. Gayathri, N. Muthukumarasamy, D. Velauthapillai,
S.B. Santhosh, V. Asokan, Magnesium incorporated hydroxyapatite
nanoparticles: preparation, characterization,
antibacterial and larvicidal activity, Arabian J. Chem., 11 (2018)
645–654.
- P. Madhavasarma, P. Veeraragavan, S. Kumaravel, M. Sridevi,
Studies on physiochemical modifications on biologically
important hydroxyapatite materials and their characterization
for medical applications, Biophys. Chem., 267 (2020) 106474,
doi: 10.1016/j.bpc.2020.106474.
- L. Chen, K.-S. Zhang, J.-Y. He, W.-H. Xu, X.-J. Huang,
J.-H. Liu, Enhanced fluoride removal from water by sulfatedoped
hydroxyapatite hierarchical hollow microspheres,
Chem. Eng. J., 285 (2016) 616–624.
- A. Oulguidoum, H. Bouyarmane, A. Laghzizil, J.-M. Nunzi,
A. Saoiabi, Development of sulfonate-functionalized
hydroxyapatite nanoparticles for cadmium removal from
aqueous solutions, Colloid Interface Sci. Commun., 30 (2019)
100178, doi: 10.1016/j.colcom.2019.100178.
- C.-H. Ooi, Y.P. Ling, S.-Y. Pung, F.-Y. Yeoh, Mesoporous
hydroxyapatite derived from surfactant-templating system for
p-Cresol adsorption: physicochemical properties, formation
process and adsorption performance, Powder Technol.,
342 (2019) 725–734.
- H. Li, Q. Jiang, S. Jiang, J. Qu, Z. Jiang, Y. Zhang, Study on the
adsorption performance of Fe(II)-doped hydroxyapatite for
Pb(II) in aqueous solution, J. Agric. Resour. Environ., (2021)
1–15, doi:10.13254/j.jare.2021.0211.
- H. He, Z. Zhu, J. Liu, Y. Zhu, Q. Yan, Y. Liu, N. Mo, H. Xuan,
W. Wei, Removal of Pb2+ from aqueous solution by magnesium–calcium hydroxyapatite adsorbent, Environ. Sci., 40 (2019)
4081–4090.
- M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier,
F. Rodriguez-Reinoso, J. Rouquerol, K. Sing, Physisorption of
gases, with special reference to the evaluation of surface area
and pore size distribution (IUPAC Technical Report), Pure
Appl. Chem., 87 (2015) 1051–1069.
- A.I. Ivanets, N.V. Kitikova, I.L. Shashkova, M. Yu. Roshchina,
V. Srivastava, M. Sillanpää, Adsorption performance of
hydroxyapatite with different crystalline and porous structure
towards metal ions in multicomponent solution, J. Water
Process Eng., 32 (2019) 100963, doi: 10.1016/j.jwpe.2019.100963.
- H. Ding, H. Pan, X. Xu, R. Tang, Towards a detailed understanding
of magnesium ions on hydroxyapatite crystallization
inhibition, Cryst. Growth Des., 14 (2014) 763–769.
- V.F.-C. Jose, L.-R. Roberto, M.-B. Jovita, M.G.-C. Rosa,
A.-P. Antonio, J.L.-D. Gladis, Sorption mechanism of Cd(II)
from water solution onto chicken eggshell, Appl. Surf. Sci.,
276 (2013) 682–690.
- N. Liang, B. Min, G. Feng, Z. Zhu, Passivation remediation
performance of lead-contaminated soil by hierarchical porous
material of hydroxyapatite coated on bamboo biochar, J. Guilin
Univ. Technol., 41 (2021) 193–200.
- M. Liang, D. Wang, Y. Zhu, Y. Xiao, Z. Zhu, S. Tang, Preparation
of hydroxylapatite/bagasse biochar composite adsorbent and
its adsorption mechanism on As(V) from aqueous solution,
Res. Environ. Sci., 30 (2017) 607–614.
- Q. Zhang, F. Liu, A. Yang, J. Zhu, W. Yang, Adsorption
characteristics and fixation effect of Mg-HAp on Mn in coal
gangue, Ind. Water Treat., 41 (2021) 61–66.
- S. Teerakanok, M. Zhao, R. Giordano, Y. Fan, Interaction of
doped magnesium, zinc and fluoride ions on hydroxyapatite
crystals grown on etched human enamel, J. Cryst. Growth,
571 (2021) 126262, doi:10.1016/j.jcrysgro.2021.126262.
- Y. Li, M.A. Taggart, C. McKenzie, Z. Zhang, Y. Lu, S. Pap,
S. Gibb, Utilizing low-cost natural waste for the removal of
pharmaceuticals from water: mechanisms, isotherms and
kinetics at low concentrations, J. Cleaner Prod., 227 (2019)
88–97.
- A.I. Ivanets, V. Srivastava, N.V. Kitikova, I.L. Shashkova,
M. Sillanpää, Kinetic and thermodynamic studies of the Co(II)
and Ni(II) ions removal from aqueous solutions by Ca-Mg
phosphates, Chemosphere, 171 (2017) 348–354.
- A.A. Attia, S.A. Khedr, S.A. Elkholy, Adsorption of chromium
ion (VI) by acid activated carbon, Braz. J. Chem. Eng., 27 (2010)
183–193.
- Y. Zhou, W. Li, X. Jiang, Y. Sun, H. Yang, Q. Liu, Y. Cao, Y. Zhang,
H. Cheng, Synthesis of strontium (Sr) doped hydroxyapatite
(HAp) nanorods for enhanced adsorption of Cr(VI) ions from
wastewater, Ceram. Int., 47 (2021) 16730–16736.
- F. Wang, W. Sun, W. Pan, N. Xu, Adsorption of sulfamethoxazole
and 17β-estradiol by carbon nanotubes/CoFe2O4 composites,
Chem. Eng. J., 274 (2015) 17–29.
- L. Bandura, M. Białoszewska, S. Malinowski, W. Franus,
Adsorptive performance of fly ash-derived zeolite modified
by β-cyclodextrin for ibuprofen, bisphenol A and caffeine
removal from aqueous solutions – equilibrium and kinetic
study, Appl. Surf. Sci., 562 (2021) 150160, doi: 10.1016/j.apsusc.2021.150160.
- M.M. Rao, A. Ramesh, G.P.C. Rao, K. Seshaiah, Removal of
copper and cadmium from the aqueous solutions by activated
carbon derived from Ceiba pentandra hulls, J. Hazard. Mater.,
129 (2006) 123–129.
- W. Guo, X. Liang, D. Lin, Y. Xu, L. Wang, Y. Sun, X. Qin,
Adsorption of Cd2+ on biochar from aqueous solution, Environ.
Sci., 34 (2013) 3716–3721.
- Y. Xiao, Y. Xue, F. Gao, A. Mosa, Sorption of heavy metal ions
onto crayfish shell biochar: effect of pyrolysis temperature,
pH and ionic strength, J. Taiwan Inst. Chem. Eng., 80 (2017)
114–121.
- K. Kadirvelu, M. Kavipriya, C. Karthika, N. Vennilamani,
S. Pattabhi, Mercury(II) adsorption by activated carbon made
from sago waste, Carbon, 42 (2004) 745–752.
- K. Song, H. Huang, M. Lu, A. Yang, J. Weng, K. Duan,
Hydrothermal preparation and characterization of Zn, Si, Mg,
Fe doped hydroxyapatite, J. Inorg. Mater., 36 (2021) 1091–1096.
- Y.-Y. Wang, Y.-X. Liu, H.-H. Lu, R.-Q. Yang, S.-M. Yang,
Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto
hydroxyapatite-biochar nanocomposite in aqueous solutions,
J. Solid State Chem., 261 (2018) 53–61.
- Y.-Y. Wang, H.-H. Lu, Y.-X. Liu, S.-M. Yang, Removal
of phosphate from aqueous solution by SiO2-biochar
nanocomposites prepared by pyrolysis of vermiculite treated
algal biomass, RSC Adv., 6 (2016) 83534–83546.
- P.F. Zito, A. Caravella, A. Brunetti, E. Drioli, G. Barbieri,
Estimation of Langmuir and Sips models adsorption parameters
for NaX and NaY, J. Chem. Eng. Data, 60 (2015) 2858–2868.
- H. Cao, X. Wu, S.S.A. Syed-Hassan, S. Zhang, S.H. Mood,
Y.J. Milan, M. Garcia-Perez, Characteristics and mechanisms
of phosphorous adsorption by rape straw-derived biochar
functionalized with calcium from eggshell, Bioresour. Technol.,
318 (2020) 124063, doi: 10.1016/j.biortech.2020.124063.
- A.I. Ivanets, N.V. Kitikova, I.L. Shashkova, O.V. Oleksiienko,
I. Levchuk, M. Sillanpää, Removal of Zn2+, Fe2+, Cu2+, Pb2+,
Cd2+, Ni2+ and Co2+ ions from aqueous solutions using
modified phosphate dolomite, J. Environ. Chem. Eng., 2
(2014) 981–987.
- A.I. Ivanets, V. Srivastava, N.V. Kitikova, I.L. Shashkova,
M. Sillanpää, Non-apatite Ca-Mg phosphate sorbent for
removal of toxic metal ions from aqueous solutions, J. Environ.
Chem. Eng., 5 (2017) 2010–2017.
- A.N. Amenaghawon, C.L. Anyalewechi, H. Darmokoesoemo,
H.S. Kusuma, Hydroxyapatite-based adsorbents: applications
in sequestering heavy metals and dyes, J. Environ. Manage.,
302 (2022) 113989, doi:10.1016/j.jenvman.2021.113989.
- L.P. Higuita, A.F. Vargas, M.J. Gil, L.F. Giraldo, Synthesis and
characterization of nanocomposite based on hydroxyapatite
and monetite, Mater. Lett., 175 (2016) 169–172.
- X. Cao, L.Q. Ma, D.R. Rhue, C.S. Appel, Mechanisms of lead,
copper, and zinc retention by phosphate rock, Environ. Pollut.,
131 (2004) 435–444.
- S.V. Dorozhkin, Amorphous calcium (ortho)phosphates,
Acta Biomater., 6 (2010) 4457–4475.