References

  1. X. Wang, W. Cui, M. Wang, Y. Liang, G. Zhu, T. Jin, X. Chen, The association between life-time dietary cadmium intake from rice and chronic kidney disease, Ecotoxicol. Environ. Saf., 211 (2021) 111933, doi:10.1016/j.ecoenv.2021.111933.
  2. I. Suhani, S. Sahab, V. Srivastava, R.P. Singh, Impact of cadmium pollution on food safety and human health, Curr. Opin. Toxicol., 27 (2021) 1–7, doi: 10.1016/j.cotox.2021.04.004.
  3. D.L. Knoell, T.A. Wyatt, The adverse impact of cadmium on immune function and lung host defense, Semin. Cell Dev. Biol., 115 (2020) 70–76.
  4. M. Mahmood, M.M. Barbooti, A. Balasim, A. Altameemi, M.N. Al-Terehi, N. Al-Shuwaiki, Removal of heavy metals using chemicals precipitation, Eng. Technol. J., 29 (2011) 595–612.
  5. R. Kumar, J. Chawla, Removal of cadmium ion from water/wastewater by nano-metal oxides: a review, Water Qual. Exposure Health, 5 (2014) 215–226.
  6. R. Leyma, S. Platzer, F. Jirsa, W. Kandioller, R. Krachler, B.K. Keppler, Novel thiosalicylate-based ionic liquids for heavy metal extractions, J. Hazard. Mater., 314 (2016) 164–171.
  7. A. Almasian, M. Giahi, G.C. Fard, S.A. Dehdast, L. Maleknia, Removal of heavy metal ions by modified PAN/PANI-nylon core-shell nanofibers membrane: filtration performance, antifouling and regeneration behavior, Chem. Eng. J., 351 (2018) 1166–1178.
  8. B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosens. Bioelectron., 94 (2017) 443–455.
  9. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  10. M. Owlad, M.K. Aroua, W.M.A.W. Daud, Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine, Bioresour. Technol., 101 (2010) 5098–5103.
  11. C. Gutiérrez, H.K. Hansen, P. Hernández, C. Pinilla, Biosorption of cadmium with brown macroalgae, Chemosphere, 138 (2015) 164–169.
  12. Y. Chen, H. Wang, W. Zhao, S. Huang, Four different kinds of peels as adsorbents for the removal of Cd(II) from aqueous solution: kinetics, isotherm and mechanism, J. Taiwan Inst. Chem. Eng., 88 (2018) 146–151.
  13. B.B. Palabıyık, H. Selcuk, Y.A. Oktem, Cadmium removal using potato peels as adsorbent: kinetic studies, Desal. Water Treat., 172 (2019) 148–157.
  14. S. Afroze, T.K. Sen, A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents, Water Air Soil Pollut., 229 (2018) 225, doi: 10.1007/s11270-018-3869-z.
  15. D. Purkayastha, U. Mishra, S. Biswas, A comprehensive review on Cd(II) removal from aqueous solution,
    J. Water Process Eng., 2 (2014) 105–128.
  16. K. Pyrzynska, Removal of cadmium from wastewaters with low-cost adsorbents, J. Environ. Chem. Eng., 7 (2019) 102795, doi: 10.1016/j.jece.2018.11.040.
  17. P. Sudhakar, I.D. Mall, V.C. Srivastava, Adsorptive removal of bisphenol-A by rice husk ash and granular activated carbon—a comparative study, Desal. Water Treat., 57 (2016) 12375–12384.
  18. V. Vandeginste, Food waste eggshell valorization through development of new composites: a review, Sustainable Mater. Technol., 29 (2021) e00317, doi: 10.1016/j.susmat.2021.e00317.
  19. Y. Feng, B. Ashok, K. Madhukar, J.M. Zhang, J. Zhang, K. Obi Reddy, A. Varada Rajulu, Preparation and characterization of polypropylene carbonate bio-filler (eggshell powder) composite films, Int. J. Polym. Anal. Charact., 19 (2014) 637–647.
  20. P.S. Katha, Z. Ahmed, R. Alam, B. Saha, A. Acharjee, M. Safiur Rahman, Efficiency analysis of eggshell and tea waste as low cost adsorbents for Cr removal from wastewater sample, S. Afr. J. Chem. Eng., 37 (2021) 186–195.
  21. S.M. Prabhu, S.S. Elanchezhiyan, G. Lee, A. Khan, S. Meenakshi, Assembly of nano-sized hydroxyapatite onto graphene oxide sheets via in-situ fabrication method and its prospective application for defluoridation studies, Chem. Eng. J., 300 (2016) 334–342, 1385–8947.
  22. B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, V. Asokan, Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity, Arabian J. Chem., 11 (2018) 645–654.
  23. P. Madhavasarma, P. Veeraragavan, S. Kumaravel, M. Sridevi, Studies on physiochemical modifications on biologically important hydroxyapatite materials and their characterization for medical applications, Biophys. Chem., 267 (2020) 106474, doi: 10.1016/j.bpc.2020.106474.
  24. L. Chen, K.-S. Zhang, J.-Y. He, W.-H. Xu, X.-J. Huang, J.-H. Liu, Enhanced fluoride removal from water by sulfatedoped hydroxyapatite hierarchical hollow microspheres, Chem. Eng. J., 285 (2016) 616–624.
  25. A. Oulguidoum, H. Bouyarmane, A. Laghzizil, J.-M. Nunzi, A. Saoiabi, Development of sulfonate-functionalized hydroxyapatite nanoparticles for cadmium removal from aqueous solutions, Colloid Interface Sci. Commun., 30 (2019) 100178, doi: 10.1016/j.colcom.2019.100178.
  26. C.-H. Ooi, Y.P. Ling, S.-Y. Pung, F.-Y. Yeoh, Mesoporous hydroxyapatite derived from surfactant-templating system for p-Cresol adsorption: physicochemical properties, formation process and adsorption performance, Powder Technol., 342 (2019) 725–734.
  27. H. Li, Q. Jiang, S. Jiang, J. Qu, Z. Jiang, Y. Zhang, Study on the adsorption performance of Fe(II)-doped hydroxyapatite for Pb(II) in aqueous solution, J. Agric. Resour. Environ., (2021) 1–15, doi:10.13254/j.jare.2021.0211.
  28. H. He, Z. Zhu, J. Liu, Y. Zhu, Q. Yan, Y. Liu, N. Mo, H. Xuan, W. Wei, Removal of Pb2+ from aqueous solution by magnesium–calcium hydroxyapatite adsorbent, Environ. Sci., 40 (2019) 4081–4090.
  29. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  30. A.I. Ivanets, N.V. Kitikova, I.L. Shashkova, M. Yu. Roshchina, V. Srivastava, M. Sillanpää, Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution, J. Water Process Eng., 32 (2019) 100963, doi: 10.1016/j.jwpe.2019.100963.
  31. H. Ding, H. Pan, X. Xu, R. Tang, Towards a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition, Cryst. Growth Des., 14 (2014) 763–769.
  32. V.F.-C. Jose, L.-R. Roberto, M.-B. Jovita, M.G.-C. Rosa, A.-P. Antonio, J.L.-D. Gladis, Sorption mechanism of Cd(II) from water solution onto chicken eggshell, Appl. Surf. Sci., 276 (2013) 682–690.
  33. N. Liang, B. Min, G. Feng, Z. Zhu, Passivation remediation performance of lead-contaminated soil by hierarchical porous material of hydroxyapatite coated on bamboo biochar, J. Guilin Univ. Technol., 41 (2021) 193–200.
  34. M. Liang, D. Wang, Y. Zhu, Y. Xiao, Z. Zhu, S. Tang, Preparation of hydroxylapatite/bagasse biochar composite adsorbent and its adsorption mechanism on As(V) from aqueous solution, Res. Environ. Sci., 30 (2017) 607–614.
  35. Q. Zhang, F. Liu, A. Yang, J. Zhu, W. Yang, Adsorption characteristics and fixation effect of Mg-HAp on Mn in coal gangue, Ind. Water Treat., 41 (2021) 61–66.
  36. S. Teerakanok, M. Zhao, R. Giordano, Y. Fan, Interaction of doped magnesium, zinc and fluoride ions on hydroxyapatite crystals grown on etched human enamel, J. Cryst. Growth, 571 (2021) 126262, doi:10.1016/j.jcrysgro.2021.126262.
  37. Y. Li, M.A. Taggart, C. McKenzie, Z. Zhang, Y. Lu, S. Pap, S. Gibb, Utilizing low-cost natural waste for the removal of pharmaceuticals from water: mechanisms, isotherms and kinetics at low concentrations, J. Cleaner Prod., 227 (2019) 88–97.
  38. A.I. Ivanets, V. Srivastava, N.V. Kitikova, I.L. Shashkova, M. Sillanpää, Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca-Mg phosphates, Chemosphere, 171 (2017) 348–354.
  39. A.A. Attia, S.A. Khedr, S.A. Elkholy, Adsorption of chromium ion (VI) by acid activated carbon, Braz. J. Chem. Eng., 27 (2010) 183–193.
  40. Y. Zhou, W. Li, X. Jiang, Y. Sun, H. Yang, Q. Liu, Y. Cao, Y. Zhang, H. Cheng, Synthesis of strontium (Sr) doped hydroxyapatite (HAp) nanorods for enhanced adsorption of Cr(VI) ions from wastewater, Ceram. Int., 47 (2021) 16730–16736.
  41. F. Wang, W. Sun, W. Pan, N. Xu, Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites, Chem. Eng. J., 274 (2015) 17–29.
  42. L. Bandura, M. Białoszewska, S. Malinowski, W. Franus, Adsorptive performance of fly ash-derived zeolite modified by β-cyclodextrin for ibuprofen, bisphenol A and caffeine removal from aqueous solutions – equilibrium and kinetic study, Appl. Surf. Sci., 562 (2021) 150160, doi: 10.1016/j.apsusc.2021.150160.
  43. M.M. Rao, A. Ramesh, G.P.C. Rao, K. Seshaiah, Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls, J. Hazard. Mater., 129 (2006) 123–129.
  44. W. Guo, X. Liang, D. Lin, Y. Xu, L. Wang, Y. Sun, X. Qin, Adsorption of Cd2+ on biochar from aqueous solution, Environ. Sci., 34 (2013) 3716–3721.
  45. Y. Xiao, Y. Xue, F. Gao, A. Mosa, Sorption of heavy metal ions onto crayfish shell biochar: effect of pyrolysis temperature, pH and ionic strength, J. Taiwan Inst. Chem. Eng., 80 (2017) 114–121.
  46. K. Kadirvelu, M. Kavipriya, C. Karthika, N. Vennilamani, S. Pattabhi, Mercury(II) adsorption by activated carbon made from sago waste, Carbon, 42 (2004) 745–752.
  47. K. Song, H. Huang, M. Lu, A. Yang, J. Weng, K. Duan, Hydrothermal preparation and characterization of Zn, Si, Mg, Fe doped hydroxyapatite, J. Inorg. Mater., 36 (2021) 1091–1096.
  48. Y.-Y. Wang, Y.-X. Liu, H.-H. Lu, R.-Q. Yang, S.-M. Yang, Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions, J. Solid State Chem., 261 (2018) 53–61.
  49. Y.-Y. Wang, H.-H. Lu, Y.-X. Liu, S.-M. Yang, Removal of phosphate from aqueous solution by SiO2-biochar nanocomposites prepared by pyrolysis of vermiculite treated algal biomass, RSC Adv., 6 (2016) 83534–83546.
  50. P.F. Zito, A. Caravella, A. Brunetti, E. Drioli, G. Barbieri, Estimation of Langmuir and Sips models adsorption parameters for NaX and NaY, J. Chem. Eng. Data, 60 (2015) 2858–2868.
  51. H. Cao, X. Wu, S.S.A. Syed-Hassan, S. Zhang, S.H. Mood, Y.J. Milan, M. Garcia-Perez, Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell, Bioresour. Technol., 318 (2020) 124063, doi: 10.1016/j.biortech.2020.124063.
  52. A.I. Ivanets, N.V. Kitikova, I.L. Shashkova, O.V. Oleksiienko, I. Levchuk, M. Sillanpää, Removal of Zn2+, Fe2+, Cu2+, Pb2+, Cd2+, Ni2+ and Co2+ ions from aqueous solutions using modified phosphate dolomite, J. Environ. Chem. Eng., 2 (2014) 981–987.
  53. A.I. Ivanets, V. Srivastava, N.V. Kitikova, I.L. Shashkova, M. Sillanpää, Non-apatite Ca-Mg phosphate sorbent for removal of toxic metal ions from aqueous solutions, J. Environ. Chem. Eng., 5 (2017) 2010–2017.
  54. A.N. Amenaghawon, C.L. Anyalewechi, H. Darmokoesoemo, H.S. Kusuma, Hydroxyapatite-based adsorbents: applications in sequestering heavy metals and dyes, J. Environ. Manage., 302 (2022) 113989, doi:10.1016/j.jenvman.2021.113989.
  55. L.P. Higuita, A.F. Vargas, M.J. Gil, L.F. Giraldo, Synthesis and characterization of nanocomposite based on hydroxyapatite and monetite, Mater. Lett., 175 (2016) 169–172.
  56. X. Cao, L.Q. Ma, D.R. Rhue, C.S. Appel, Mechanisms of lead, copper, and zinc retention by phosphate rock, Environ. Pollut., 131 (2004) 435–444.
  57. S.V. Dorozhkin, Amorphous calcium (ortho)phosphates, Acta Biomater., 6 (2010) 4457–4475.