References

  1. S. Cheng, Heavy metal pollution in China: origin, pattern and control, Environ. Sci. Pollut. Res., 10 (2003) 192–198.
  2. M. Halim, P. Conte, A. Piccolo, Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances, Chemosphere, 52 (2003) 265–275.
  3. O.J. Afonne, E.C. Ifediba, Heavy metals risks in plant foodsneed to step up precautionary measures, Curr. Opin. Toxicol., 22 (2020) 1–6.
  4. D. Damodaran, K.V. Shetty, B.R. Mohan, Effect of chelaters on bioaccumulation of Cd(II), Cu(II), Cr(VI), Pb(II) and Zn(II) in Galerina vittiformis from soil, Int. Biodeterior. Biodegrad., 85 (2013) 182–188.
  5. C. Zhang, K. Yang, Y. Li, F. Cheng, K. Rong, Spectral characteristics and the study of pollution degree of maize leaves under copper and lead stress, J. Indian Soc. Remote Sens., 48 (2020) 21–33.
  6. R. Musielińska, J. Kowol, J. Kwapuliński, R. Rochel, Antagonism between lead and zinc ions in plants, Arch. Environ. Prot., 42 (2016) 78–91.
  7. J. Marta, G. Anna, V. Franck, Modelling assisted phytoremediation of soils contaminated with heavy metals – main opportunities, limitations, decision making and future prospects, Chemosphere, 249 (2020) 126196, doi:10.1016/j.chemosphere.2020.126196.
  8. M. Soleimani, T. Kaghazchi, Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones-an agricultural waste, Bioresour. Technol., 99 (2008) 5374–5383.
  9. M. Bobik, I. Korus, L. Dudek, The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions, Arch. Environ. Prot., 43 (2017) 3–9.
  10. J.K. Jensen, P.E. Holm, J. Nejrup, M.B. Larsen, O. K. Borggaard, The potential of willow for remediation of heavy metal polluted calcareous urban soils, Environ. Pollut., 157 (2009) 931–937.
  11. M. Thomas, B. Bialecka, D. Zdebik, Removal of copper, nickel and tin from model and real industrial wastewater using sodium trithiocarbonate. The negative impact of complexing compounds, Arch. Environ. Prot., 44 (2018) 33–47.
  12. B. Pourrut, S. Jean, J. Silvestre, E. Pinelli, Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress, Mutat. Res., 726 (2011) 123–128.
  13. T.A. Saleh, M. Tuzen, A. Sar, Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters, J. Environ. Chem. Eng., 5 (2017) 2853–2860.
  14. S. Amirnia, M.B. Ray, A. Margaritis, Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system, Chem. Eng. J., 264 (2015) 863–872.
  15. L. Liu, J. Liu, X.T. Liu, C.W. Dai, Z.X. Zhang, W.C. Song, Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens, J. Environ. Radioact., 203 (2019) 117–124.
  16. A. Esposito, F. Pagnanelli, A. Lodi, C. Solisio, F. Vegliò, Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations, Hydrometallurgy, 60 (2001) 129–141.
  17. R.M. Gabr, S.H.A. Hassan, A.A.M. Shoreit, Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a, Int. Biodeterior. Biodegrad., 62 (2008) 195–203.
  18. X. Xu, X. Hu, Z. Ding, Y. Chen, B. Gao, Waste-art-paper biochar as an effective sorbent for recovery of aqueous Pb(II) into valueadded PbO nanoparticles, Chem. Eng. J., 308 (2017) 863–871.
  19. E. Abu-Danso, S. Peräniemi, T. Leiviskä, A. Bhatnagar, Synthesis of S-ligand tethered cellulose nanofibers for efficient removal of Pb(II) and Cd(II) ions from synthetic and industrial wastewater, Environ. Pollut., 242 (2018) 1988–1997.
  20. X. Yin, X. Meng, Y. Zhang, W. Zhang, H. Sun, J.T. Lessl, Removal of V(V) and Pb (II) by nanosized TiO2 and ZnO from aqueous solution, Ecotoxicol. Environ. Saf., 164 (2018) 510–519.
  21. H.O. Zhang, W.Z. Zhou, Y.H. Ma, H.X. Zhao, Y.Z. Zhang, FTIR spectrum and detoxication of extracellular polymeric substances secreted by microorganism, Spectrosc. Spect. Anal., 33 (2013) 3041–3043.
  22. Y.L Li, Y.N. Wei, S.Q. Huang, X.S. Liu, Z.H. Jin, Z. Meng, Biosorption of Cr(VI) onto Auricularia auricula dreg biochar modified by cationic surfactant: characteristics and mechanism, J. Mol. Liq., 269 (2018) 824–832.
  23. J. Tang, L. Zhang, J. Zhang, L. Ren, Y. Zhou, Y. Zheng, L. Luo, Y. Yang, H. Huang, A. Chen, Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost, Sci. Total Environ., 701 (2019) 134751, doi: 10.1016/j.scitotenv.2019.134751.
  24. J. Zhang, Y. Sun, Molecular cloning, expression and characterization of a chitosanase from Microbacterium sp., Biotechnol. Lett., 29 (2007) 1221–1225.
  25. Z.M. Jin, L. Xia, Z. Tuo, L.J. Liu, T. Black, K.C. Jones, H. Zhang, X. Wang, N. Jin, D. Zhang, Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy, Environ. Pollut., 263 (2020) 114419, doi: 10.1016/j. envpol.2020.114419.
  26. L. Liu, M.Y. Xia, J.W. Hao, H. X. Xu, W.C. Song, Biosorption of Pb(II) by the resistant Enterobacter sp.: investigated by kinetics, equilibrium and thermodynamics, Arch. Environ. Prot., 47 (2021) 28–36.
  27. S. Deng, T. Ke, L. Li, S. Cai, Y. Zhou, Y. Liu, Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis sun, Environ. Pollut., 237 (2018) 1088–1097.
  28. C.E.R. Barquilha, E.S. Cossicha, C.R.G. Tavares, E.A. Silva, Biosorption of nickel(II) and copper(II) ions by Sargassum sp. in nature and alginate extraction products, Bioresour. Technol. Rep., 5 (2019) 43–50.
  29. H. Beheshti, M. Irani, Removal of lead(II) ions from aqueous solutions using diatomite nanoparticles, Desal. Water Treat., 57 (2016) 18799–18805.
  30. A.S. Bhatt, P.L. Sakaria, M. Vasudevan, R.R. Pawar, N. Sudheesh, H.C. Bajaj, Adsorption of an anionic dye from aqueous medium by organoclays: equilibrium modeling, kinetic and thermodynamic exploration, RSC Adv., 2 (2012) 8663–8671.