References

  1. K. Pantić, Z.J. Bajić, Z.S. Veličković, V.R. Djokić, J.D. Rusmirović, A.D. Marinković, A.A. Perić-Grujić, Adsorption performances of branched aminated waste polyacrylonitrile fibers: experimental versus modelling study, Desal. Water Treat., 171 (2019) 223–249.
  2. Renu, M. Agarwal, K. Singh, Heavy metal removal from wastewater using various adsorbents: a review, J. Water Reuse Desal., 7 (2017) 387–419.
  3. S. Mihajlović, M. Vukčević, B. Pejić, A.P. Grujić, M. Ristić, Application of waste cotton yarn as adsorbent of heavy metal ions from single and mixed solutions, Environ. Sci. Pollut. Res., 27 (2020) 35769–35781.
  4. A. Das, N. Bar, S.K. Das, Adsorptive removal of Pb(II) ion on Arachis hypogaea’s shell: batch experiments, statistical, and GA modeling, Int. J. Environ. Sci. Technol., (2022), doi: 10.1007/s13762-021-03842-w.
  5. M. Ghorbani, O. Seyedin, M. Aghamohammadhassan, Adsorptive removal of lead(II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: a review, J. Environ. Manage., 254 (2020) 109814.
  6. A. Das, N. Bar, S.K. Das, Pb(II) adsorption from aqueous solution by nutshells, green adsorbent: adsorption studies, regeneration studies, scale-up design, its effect on biological indicator and MLR modeling, J. Colloid Interface Sci., 580 (2020) 245–255.
  7. T. Mitra, N. Bar, S.K. Das, Rice husk: green adsorbent for Pb(II) and Cr(VI) removal from aqueous solution—column study and GA–NN modeling, SN Appl. Sci., 1 (2019) 5.
  8. S. Gu, X. Kang, L. Wang, E. Lichtfouse, C. Wang, Clay mineral adsorbents for heavy metal removal from wastewater: a review, Environ. Chem. Lett., 17 (2019) 629–654.
  9. H. Zeng, L. Zhai, T. Qiao, Y. Yu, J. Zhang, D. Li, Efficient removal of As(V) from aqueous media by magnetic nanoparticles prepared with iron-containing water treatment residuals, Sci. Rep.-UK, 10 (2020) 1–12.
  10. M.F. Hamza, S. Lu, K.A.M. Salih, H. Mira, A.S. Dhmees, T. Fujita, Y. Wei, Th. Vincent, E. Guibal, As(V) sorption from aqueous solutions using quaternized algal/polyethyleneimine composite beads, Sci. Total Environ., 719 (2020) 1–11.
  11. U.S. Environmental Protection Agency (USEPA), National Primary Drinking Water Regulations. Available at: https://www. epa.gov/ground-water-and-drinking-water/national-primarydrinking-water-regulations (Last Access: 27.07.2022.)
  12. World Health Organization (WHO), Guidelines for Drinking- Water Quality: Fourth Edition Incorporating the First Addendum, World Health Organization, Geneva (Licence: CC BY-NC-SA 3.0 IGO), 2017.
  13. C.P.J. Isaac, A. Sivakumar, Removal of lead and cadmium ions from water using Annona squamosa shell: kinetic and equilibrium studies, Desal. Water Treat., 51 (2013) 7700–7709.
  14. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017) 2782–2799.
  15. S. Mahdavi, M. Jalali, A. Afkhami, Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles, J. Nanopart. Res., 14 (2012) 846.
  16. M.B. Đolić, V.N. Rajaković-Ognjenović, J.P. Marković, J.P. Marković, Lj.J. Janković-Madić, M.N. Mitrić, A.E. Onjia, Lj.V. Rajaković, The effect of different extractants on lead desorption from a natural mineral, Appl. Surf. Sci., 324 (2015) 221–231.
  17. A.A. Alghamdi, A.B. Al-Odayni, W.S. Saeed, A. Al-Kahtani, F.A. Alharthi, T. Aouak, Efficient adsorption of lead(II) from aqueous phase solutions using polypyrrole-based activated carbon, Materials (Basel), 12 (2019) 2–16.
  18. B.O. Otunola, O.O. Ololade, A review on the application of clay minerals as heavy metal adsorbents for remediation purposes, Environ. Technol. Innov., 18 (2020) 100692.
  19. M. Alamgir, In: Environmental Remediation Technologies for Metal-Contaminated Soils, The Effects of Soil Properties to the Extent of Soil Contamination with Metals, 2017, pp. 1–20.
  20. A.P. Rawat, V. Kumar, P. Singh, A.C. Shukla, D.P. Singh, Kinetic behavior and mechanism of arsenate adsorption by loam and sandy loam soil, Soil Sediment Contam., 31 (2022) 15–39.
  21. S. Lagergren, Zur theorieder sogennanten adsorption geloester stoffe, kungliga svenska vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  22. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  23. S.Y. Elovich, O.G. Larinov, Theory of Adsorption from Solutions of Non Electrolytes on Solid (I) Equation Adsorption from Solutions and the Analysis of Its Simplest Form, (II) Verification of the Equation of Adsorption Isotherm from Solutions, Izv. Akad. Nauk. SSSR, Otd. Khimicheskikh Nauk, 2 (1962) 209–216.
  24. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solutions, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–60.
  25. B. Fonseca, H. Figueiredo, J. Rodrigues, A. Queiroz, T. Tavares: Mobility of Cr, Pb, Cd, Cu and Zn in a loamy sand soil: a comparative study, Geoderma, 164 (2011) 232–237.
  26. W.A. Dollase, C.R. Ross, Crystal structures of the body-centered tetragonal tectosilicates: K1.14Mg0.57Si1.43O4, K1.10Zn0.55Si1.45O4, and K1.11Fe31.11Si0.89O4, Am. Mineral., 78 (1993) 627–632.
  27. R.M. Silverstein, F.X. Webster, D.J. Kiemle, In: Spectrometric Identification of Organic Compounds 7th ed., 2005.
  28. P.G. Rouxhet, N. Samudacheata, H. Jacobs, O. Anton, Attribution of the OH stretching bands of kaolinite, Clay Miner., 12 (1977) 171–179.
  29. J. Gadsden, The infrared spectra of minerals and related inorganic compounds, Mineral. Mag., 40 (1975) 540.
  30. M.E. Parolo, M.C. Savini, R.M. Loewy, Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption, J. Environ. Manage., 196 (2017) 316–322.
  31. F. Le Guillou, W. Wetterlind, R.A. Viscarra Rossel, W. Hicks, M. Grundy, S. Tuomi, How does grinding affect the midinfrared spectra of soil and their multivariate calibrations to texture and organic carbon?, Soil Res., 53 (2015) 913–921.
  32. M. Alkan, Ö. Demirbaş, M. Dogˇan, Electrokinetic properties of kaolinite in mono- and multivalent electrolyte solutions, Microporous Mesoporous Mater., 83 (2005) 51–59.
  33. M. Gotić, S. Musić, Mossbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions, J. Mol. Struct., 834–836 (2007) 445–453.
  34. E. Balan, G. Calas, D.L. Bish, Kaolin-group minerals: from hydrogen-bonded layers to environmental recorders, Elements, 10 (2014) 183–188.
  35. M. Ivanić, N. Vdović, S. de B. Barreto, V. Bermanec, I. Sondi, Mineralogy, surface properties and electrokinetic behaviour of kaolin clays derived from naturally occurring pegmatite and granite deposits, Geol. Croat., 68 (2015) 139–145.
  36. F. Sharifipour, S. Hojati, A. Landi, A. Faz Cano, Kinetics and thermodynamics of lead adsorption from aqueous solutions onto Iranian sepiolite and zeolite, Int. J. Environ. Res., 9 (2015) 1001–1010.
  37. N. Livesey, P. Huang, Adsorption of arsenate by soils and its relation to selected chemical properties and anions, Soil Sci., 131 (1981) 88–94.
  38. K. De Brouwere, E. Smolders, R. Merckx, Soil properties affecting solid-liquid distribution of As(V) in soils, Eur. J. Soil Sci., 55 (2004) 165–173.
  39. B.A. Manning, S. Goldberg, Arsenic(III) and arsenic(V) adsorption on three California soils, Soil Sci., 162 (1997) 886–895.
  40. T.A. Elbana, H. Magdi Selim, Multireaction modeling of lead(Pb) and copper(Cu) sorption/desorption kinetics in different soils, Soil Syst., 3 (2019) 1–13.
  41. K.S. Lee, H.Y. Shim, D.S. Lee, D.Y. Chung, The fate and factors determining arsenic mobility of arsenic in soil -
    a review, Korean J. Soil Sci. Fertil., 48 (2015) 73–80.
  42. S.A. Chaudhry, Z. Zaidi, S.I. Siddiqui, Isotherm, kinetic and thermodynamics of arsenic adsorption onto iron-zirconium binary oxide-coated sand (IZBOCS): modelling and process optimization, J. Mol. Liq., 229 (2017) 230–240.
  43. Z. Veličković, G.D. Vuković, A.D. Marinković, M.S. Moldovan, A.A. Perić-Grujić, P.S. Uskoković, M.D. Ristić, Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes, Chem. Eng. J., 181–182 (2012) 174–181.
  44. S. Sen Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials: a review, Adv. Colloid Interface Sci., 162 (2011) 39–58.
  45. D.G. Strawn, D.L. Sparks, Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil, Soil Sci. Soc. Am. J., 64 (2000) 144–156.
  46. I. Ogbu, K. Akpomie, A. Osunkunle, S. Eze, Sawdust-kaolinite composite as efficient sorbent for heavy metal ions, Bangladesh J. Sci. Ind. Res., 54 (2019) 99–110.
  47. M.A. Hubbe, S. Azizian, S. Douven, Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review, BioResources, 14 (2019) 7582–7626.
  48. L.S.G. Galindo, A.F. De Almeida Neto, M.G.C. Da Silva, M.G.A. Vieira, Removal of cadmium(II) and lead(II) ions from aqueous phase on sodic bentonite, Mater. Res., 16 (2013) 515–527.
  49. S.A. Chaudhry, T.A. Khan, I. Ali, Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: isotherm, kinetic and thermodynamic studies, Egypt. J. Pet., 26 (2017) 553–563.
  50. Ş. Taşar, A. Özer, A thermodynamic and kinetic evaluation of the adsorption of Pb(II) ions using peanut (Arachis hypogaea) shell-based biochar from aqueous media, Pol. J. Environ. Stud., 29 (2020) 293–305.
  51. R. Mudzielwana, M.W. Gitari, P. Ndungu, Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics, Heliyon, 5 (2019) e02756.
  52. M. Đolić, M. Karanac, D. Radovanović, A. Umićević, A. Kapidžić, Z. Veličković, A. Marinković, Ž. Kamberović, Closing the loop: As(V) adsorption onto goethite impregnated coalcombustion fly ash as integral building materials, J. Cleaner Prod., 303 (2021) 126924.
  53. E. Agrafioti, D. Kalderis, E. Diamadopoulos, Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge, J. Environ. Manage., 133 (2014) 309–314.
  54. E. Arco-Lázaro, I. Agudo, R. Clemente, M.P. Bernal, Arsenic(V) adsorption–desorption in agricultural and mine soils: effects of organic matter addition and phosphate competition, Environ. Pollut., 216 (2016) 71–79.
  55. M.S. Rahman, M.W. Clark, L.H. Yee, M.J. Comarmond, T.E. Payne, E.D. Burton, Effects of pH, competing ions and aging on arsenic(V) sorption and isotopic exchange in contaminated soils, Appl. Geochem., 105 (2019) 114–124.
  56. Q. Feng, Z. Zhang, Y. Chen, L. Liu, Z. Zhang, C. Chen, Adsorption and desorption characteristics of arsenic on soils: kinetics, equilibrium, and effect of Fe(OH)3 colloid, H2SiO3 colloid and phosphate, Procedia Environ. Sci., 18 (2013) 26–36.
  57. J. Jiang, Z. Dai, R. Sun, Z. Zhao, Y. Dong, Z. Hong, Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an oxisol, Chemosphere, 179 (2017) 232–241.
  58. R. Mukhopadhyay, K.M. Manjaiah, S.C. Datta, R.K. Yadav, B. Sarkar, Inorganically modified clay minerals: preparation, characterization, and arsenic adsorption in contaminated water and soil, Appl. Clay Sci., 147 (2017) 1–10.
  59. S. Hafeznezami, A.G. Zimmer-Faust, A. Dunne, T. Tran, C.Yang, J.R. Lam, M.D. Reynolds, J.A. Davis, J.A. Jay, Adsorption and desorption of arsenate on sandy sediments from contaminated and uncontaminated saturated zones: kinetic and equilibrium modeling, Environ. Pollut., 215 (2016) 290–301.
  60. M. Abdelwaheb, K. Jebali, H. Dhaouadi, S. Dridi-Dhaouadi, Adsorption of nitrate, phosphate, nickel and lead on soils: risk of groundwater contamination, Ecotoxicol. Environ. Saf., 179 (2019) 182–187.
  61. Y.S. Ng, B. Sen Gupta, M.A. Hashim, Performance evaluation of natural iron-rich sandy soil as a low-cost adsorbent for removal of lead from water, Desal. Water Treat., 57 (2016) 5013–5024.
  62. A. Augustine, Adsorption–desorption study of heavy metals on sandy-loam soil of sapele metropolis, J. Environ. Sci. Technol. Food Technol., 11 (2017) 17–27.
  63. A. Kushwaha, R. Rani, J.K. Patra, Adsorption kinetics and molecular interactions of lead [Pb(II)] with natural clay and humic acid, Int. J. Environ. Sci. Technol., 17 (2020) 1325–1336.
  64. L. Kalakodio, O.E. Alepu, A. Amenay Zewde, Adsorption and desorption of lead (Pb) in sandy soil treated by various amendments, J. Environ. Anal. Toxicol., 7 (2017).
  65. C. Umeh, J.N. Asegbeloyin, K.G. Akpomie, E.E. Oyeka, A.E. Ochonogor, Adsorption properties of tropical soils from Awka North Anambra Nigeria for lead and cadmium ions from aqueous media, Chem. Afr., 3 (2020) 199–210.
  66. B. Das, N.K. Mondal, R. Bhaumik, P. Roy, Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil, Int. J. Environ. Sci. Technol., 11 (2014) 1101–1114.