References

  1. E. Norabadi, A.H. Panahi, R. Ghanbari, A. Meshkinian, H. Kamani, S.D. Ashrafi, Optimizing the parameters of amoxicillin removal in a photocatalysis/ozonation process using Box–Behnken response surface methodology, Desal. Water Treat., 192 (2020) 234–240.
  2. A.H. Panahi, S.D. Ashrafi, H. Kamani, M. Khodadadi, E.C. Lima, F.K. Mostafapour, A.H. Mahvi, Removal of cephalexin from artificial wastewater by mesoporous silica materials using Box–Behnken response surface methodology, Desal. Water Treat., 159 (2019) 169–180.
  3. Q. Su, J. Li, H. Yuan, B. Wang, Y. Wang, Y. Li, Y. Xing, Visiblelight- driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B(Fe) heterostructure: mechanisms, DFT calculation, degradation pathway and toxicity evolution, Chem. Eng. J., 427 (2022) 131594, doi: 10.1016/j.cej.2021.131594.
  4. V. Bhatia, A.K. Ray, A. Dhir, Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation, Sep. Purif. Technol., 161 (2016) 1–7.
  5. S.-L. Liu, B. Liu, Z. Xiang, L. Xu, X.-F. Wang, Y. Liu, X. Wang, Fabrication of CaWO4 microspheres with enhanced sonocatalytic performance for ciprofloxacin removal in aqueous solution, Colloids Surf., A, 628 (2021) 127206, doi: 10.1016/j.colsurfa.2021.127206.
  6. A. Jahantiq, R. Ghanbari, A. Hossein Panahi, S.D. Ashrafi, A.D. Khatibi, E. Noorabadi, A. Meshkinian, H. Kamani, Photocatalytic degradation of 2,4,6-trichlorophenol in aqueous solutions using synthesized Fe-doped TiO2 nanoparticles via response surface methodology, Desal. Water Treat., 183 (2020) 366–373.
  7. H. Kamani, S. Nasseri, M. Khoobi, R.N. Nodehi, A.H. Mahvi, Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution, J. Environ. Health Sci. Eng., 14 (2016) 3,
    doi:10.1186/s40201-016-0242-2.
  8. H. Kamani, S.D. Ashrafi, A. Jahantiq, E. Norabadi, M. Dashti Zadeh, Catalytic degradation of humic acid using Fe–doped TiO2 - ultrasound hybrid system from aqueous solution, Int. J. Environ. Anal. Chem., (2021) 1–15, doi: 10.1080/03067319.2021.1979535.
  9. E. Norabadi, S.D. Ashrafi, H. Kamani, A. Jahantiq, Degradation of 2,6-dichlorophenol by Fe-doped TiO2 Sonophotocatalytic process: kinetic study, intermediate product, degradation pathway, Int. J. Environ. Anal. Chem., (2020) 1–16, doi: 10.1080/03067319.2020.1837122.
  10. E. Hapeshi, I. Fotiou, D. Fatta-Kassinos, Sonophotocatalytic treatment of ofloxacin in secondary treated effluent and elucidation of its transformation products, Chem. Eng. J., 224 (2013) 96–105.
  11. M. Pirsaheb, B. Shahmoradi, T. Khosravi, K. Karimi, Y. Zandsalimi, Solar degradation of malachite green using nickel-doped TiO2 nanocatalysts, Desal. Water Treat., 57 (2016) 9881–9888.
  12. C.P. Sajan, B. Shahmoradi, H.P. Shivaraju, K.M.L. Rai, S. Ananda, M.B. Shayan, T. Thonthai, G.V.N. Rao,
    K. Byrappa, Photocatalytic degradation of textile effluent using hydrothermally synthesised titania supported molybdenum oxide photocatalyst, Mater. Res. Innov., 14 (2010) 89–94.
  13. J. Wang, W. Sun, Z. Zhang, Z. Jiang, X. Wang, R. Xu, R. Li, X. Zhang, Preparation of Fe-doped mixed crystal TiO2 catalyst and investigation of its sonocatalytic activity during degradation of azo fuchsine under ultrasonic irradiation, J. Colloid Interface Sci., 320 (2008) 202–209.
  14. K. Salehi, B. Shahmoradi, A. Bahmani, M. Pirsaheb, H.P. Shivaraju, Optimization of reactive black 5 degradation using hydrothermally synthesized NiO/TiO2 nanocomposite under natural sunlight irradiation, Desal. Water Treat., 57 (2016) 25256–25266.
  15. B. Shahmoradi, I.A. Ibrahim, N. Sakamoto, S. Ananda, T.N. Row, K. Soga, K. Byrappa, S. Parsons, Y. Shimizu, In situ surface modification of molybdenum-doped organic-inorganic hybrid TiO2 nanoparticles under hydrothermal conditions and treatment of pharmaceutical effluent, Environ. Technol., 31 (2010) 1213–1220.
  16. B. Shahmoradi, M.A. Pordel, M. Pirsaheb, A. Maleki, S. Kohzadi, Y. Gong, R.R. Pawar, S.-M. Lee, H.P. Shivaraju,
    G. McKay, Synthesis and characterization of barium-doped TiO2 nanocrystals for photocatalytic degradation of Acid Red 18 under solar irradiation, Desal. Water Treat., 88 (2017) 200–206.
  17. S.I. Abbas, H.T. John, A.J. Fraih, Technology, Preparation of nano crystalline zinc–ferrite as material for microwaves absorption by sol–gel methods, Indian J. Sci. Technol., 10 (2017) 1–6.
  18. L. Liu, F. Chen, F. Yang, Y. Chen, J. Crittenden, Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2, Chem. Eng. J., 181–182 (2012) 189–195.
  19. Y.L. Pang, A.Z. Abdullah, Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water, J. Hazard. Mater., 235 (2012) 326–335.
  20. V. Moradi, M.B. Jun, A. Blackburn, R.A. Herring, Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process, Appl. Surf. Sci., 427 (2018) 791–799.
  21. Y. Sui, Q. Liu, T. Jiang, Y. Guo, Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings, Appl. Surf. Sci., 428 (2018) 1149–1158.
  22. H. Kamani, G.H. Safari, G. Asgari, S.D. Ashrafi, Data on modeling of enzymatic elimination of Direct Red 81 using response surface methodology, Data Brief, 18 (2018) 80–86.
  23. H. Kamani, E. Bazrafshan, S.D. Ashrafi, F. Sancholi, Efficiency of sono-nano-catalytic process of TiO2
    nano-particle in removal of erythromycin and metronidazole from aqueous solution, J. Mazandaran Univ. Med. Sci., 27 (2017) 140–154.
  24. E. Hapeshi, A. Achilleos, M.I. Vasquez, C. Michael, N.P. Xekoukoulotakis, D. Mantzavinos, D. Kassinos, Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions, J. Water Res., 44 (2010) 1737–1746.
  25. T. An, H. Yang, G. Li, W. Song, W.J. Cooper, X. Nie, Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal., B, 94 (2010) 288–294.
  26. O.S. Ayanda, O.H. Aremu, C.O. Akintayo, K.O. Sodeinde, W.N. Igboama, E.O. Oseghe, S.M. Nelana, Sonocatalytic degradation of amoxicillin from aquaculture effluent by zinc oxide nanoparticles, Environ. Nanotechnol. Monit. Manage., 16 (2021) 100513, doi: 10.1016/j.enmm.2021.100513.
  27. G. Zhao, J. Ding, F. Zhou, X. Chen, L. Wei, Q. Gao, K. Wang, Q. Zhao, Construction of a visible-light-driven magnetic dual Z-scheme BiVO4/g-C3N4/NiFe2O4 photocatalyst for effective removal of ofloxacin: mechanisms and degradation pathway, Chem. Eng. J., 405 (2021) 126704, doi: 10.1016/j.cej.2020.126704.
  28. R. Mohammadi, B. Massoumi, M. Rabani, Photocatalytic decomposition of amoxicillin trihydrate antibiotic in aqueous solutions under UV irradiation using Sn/TiO2 nanoparticles, Int. J. Photoenergy, 2012 (2012), doi:10.1155/2012/514856.
  29. S. Sohrabnezhad, Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst, Spectrochim. Acta, Part A, 81 (2011) 228–235.
  30. L.-L. He, Y. Zhu, Q. Qi, X.-Y. Li, J.-Y. Bai, Z. Xiang, X. Wang, Synthesis of CaMoO4 microspheres with enhanced sonocatalytic performance for the removal of Acid Orange 7 in the aqueous environment, Sep. Purif. Technol., 276 (2021) 119370, doi: 10.1016/j.seppur.2021.119370.
  31. H. Guo, N. Jiang, H. Wang, K. Shang, N. Lu, J. Li, Y. Wu, Degradation of flumequine in water by pulsed discharge plasma coupled with reduced graphene oxide/TiO2 nanocomposites, Sep. Purif. Technol., 218 (2019) 206–216.
  32. A. Hassani, A. Khataee, S. Karaca, C. Karaca, P. Gholami, Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite, Ultrason. Sonochem., 35 (2017) 251–262.
  33. A.V. Karim, A. Shriwastav, Degradation of ciprofloxacin using photo, sono, and sonophotocatalytic oxidation with visible light and low-frequency ultrasound: degradation kinetics and pathways, Chem. Eng. J., 392 (2020) 124853, doi: 10.1016/j.cej.2020.124853.
  34. M.I. Vasquez, M. Garcia-Käufer, E. Hapeshi, J. Menz, K. Kostarelos, D. Fatta-Kassinos, K. Kümmerer, Chronic ecotoxic effects to Pseudomonas putida and Vibrio fischeri, and cytostatic and genotoxic effects to the hepatoma cell line (HepG2) of ofloxacin photo(cata)lytically treated solutions, Sci. Total Environ., 450–451 (2013) 356–365.
  35. M.S. Peres, M.G. Maniero, J.R. Guimarães, Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity, Photochem. Photobiol. Sci., 14 (2015) 556–562.
  36. L.L. Shen, J. Baranowski, A.G. Pernet, Mechanism of inhibition of DNA gyrase by quinolone antibacterials: specificity and cooperativity of drug binding to DNA, Biochemistry, 28 (1989) 3879–3885.
  37. T. Paul, M.C. Dodd, T.J. Strathmann, Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity, Water Res., 44 (2010) 3121–3132.