References

  1. V. Chander, B. Sharma, V. Negi, R.S. Aswal, P. Singh, R. Singh, R. Dobhal, Pharmaceutical compounds in drinking water, J. Xenobiot., 6 (2016) 5774, doi: 10.4081/xeno.2016.5774.
  2. I. Villaescusa, N. Fiol, J. Poch, A. Bianchi, C. Bazzicalupi, Mechanism of paracetamol removal by vegetable wastes: the contribution of π-π interactions, hydrogen bonding and hydrophobic effect, Desalination, 270 (2011) 135–142.
  3. J.R. Domínguez, T. González, P. Palo, E.M. Cuerda-Correa, Removal of common pharmaceuticals present in surface waters by Amberlite XAD-7 acrylic-ester-resin: influence of pH and presence of other drugs, Desalination, 269 (2011) 231–238.
  4. A. de Wilt, Y. He, N. Sutton, A. Langenhoff, H. Rijnaarts, Sorption and biodegradation of six pharmaceutically active compounds under four different redox conditions, Chemosphere, 193 (2018) 811–819.
  5. J.R. de Andrade, M.F. Oliveira, M.G.C. da Silva, M.G.A. Vieira, Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review, J. Chem. Eng., 57 (2018) 3103–3127.
  6. R.A. Figueroa, A.A. MacKay, Sorption of oxytetracycline to iron oxides and iron oxide-rich soils, Environ. Sci. Technol., 39 (2005) 6664–6671.
  7. R.A. Figueroa, A. Leonard, A.A. MacKay, Modeling tetracycline antibiotic sorption to clays, Environ. Sci. Technol., 38 (2004) 476–483.
  8. J.R.V. Pils, D.A. Laird, Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes, Environ. Sci. Technol., 41 (2007) 1928–1933.
  9. C. Gu, K.G. Karthikeyan, Interaction of tetracycline with aluminium and iron hydrous oxides, Environ. Sci. Technol., 39 (2005) 2660–2667.
  10. T.X. Bui, H. Choi, Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica, Chemosphere, 80 (2010) 681–686.
  11. J. Maszkowska, S. Stolte, J. Kumirska, P. Łukaszewicz, K. Mioduszewska, A. Puckowski, M. Caban, M. Wagil,
    P. Stepnowski, A. Białk-Bielińska, Beta-blockers in the environment: Part I. Mobility and hydrolysis study, Sci. Total Environ., 493 (2014) 1112–1121.
  12. R.S. Vardanyan, V.J. Hruby, Synthesis of Essential Drugs, 1st ed., Elsevier, 2006.
  13. S.N. Nanaki, G.Z. Kyzas, A. Tzereme, M. Papageorgiou, M. Kostoglou, D.N. Bikiaris, D.A. Lambropoulou, Synthesis and characterization of modified carrageenan microparticles for the removal of pharmaceuticals from aqueous solutions, Colloids Surf., B, 127 (2015) 256–265.
  14. D. Calamari, E. Zuccato, S. Castiglioni, R. Bagnati, R. Fanelli, Strategic survey of therapeutic drugs in the rivers Po and Lambro in Northern Italy, Environ. Sci. Technol., 37 (2003) 1241–1248.
  15. J. Maszkowska, S. Stolte, J. Kumirska, P. Łukaszewicz, K. Mioduszewska, A. Puckowski, M. Caban, M. Wagil,
    P. Stepnowski, A. Białk-Bielińska, Beta-blockers in the environment: part I. Mobility and hydrolysis study, Sci. Total Environ., 493 (2014) 1112–1121.
  16. S.J. Enna, D.B. Bylund, Eds., xPharm: The Comprehensive Pharmacology Reference, Elsevier, 2007.
  17. N. Gherbi, Z. Ziani, M. Khetib, D. Belkharchouche, A.-H. Meniai, Experimental study and test of a new biosorbent prepared from bean peels to remove Rhodamine B from industrial wastewaters, Desal. Water Treat., 221 (2021) 64–75.
  18. M. Kwiatkowski, J. Sreńscek-Nazzal, B. Michalkiewicz, An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12, Adsorption, 23 (2017) 551–561.
  19. M.A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism, Carbon, 41 (2003) 267–275.
  20. M.P. Elizalde-González, J. Mattusch, A.A. Peláez-Cid, R. Wennrich, Characterization of adsorbent materials prepared from avocado kernel seeds: natural, activated and carbonized forms, J. Anal. Appl. Pyrolysis, 78 (2007) 185–193.
  21. A. Reffas, V. Bernardet, B. David, L. Reinert, M. Bencheikh Lehocine, M. Dubois, N. Batisse, L. Duclaux, Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene blue and Nylosan Red N-2RBL, J. Hazard. Mater., 175 (2010) 779–788.
  22. C.K. Singh, J.N. Sahu, K.K. Mahalik, C.R. Mohanty, B. Raj Mohan, B.C. Meikap, Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid, J. Hazard. Mater., 153 (2008) 221–228.
  23. S. Smart, S. Liu, J.M. Serra, J.C. Diniz da Costa, A. Iulianelli, A. Basile, Chapter 8 – Porous Ceramic Membranes for Membrane Reactors, A. Basile, Ed., Handbook of Membrane Reactors: Fundamental Materials Science, Design and Optimisation, Volume 1 in Woodhead Publishing Series in Energy, Woodhead Publishing, 2013, pp. 298–336.
  24. C.F. Toncón-Leal, J. Villarroel-Rocha, M.T.P. Silva, T.P. Braga, K. Sapag, Characterization of mesoporous region by the scanning of the hysteresis loop in adsorption–desorption isotherms, Adsorption, 27 (2021) 1109–1122.
  25. J. Alcañiz-Monge, D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, Fundamentals of methane adsorption in microporous carbons, Microporous mesoporous Mater., 124 (2009) 110–116.
  26. M.S. Solum, R.J. Pugmire, M. Jagtoyen, F. Derbyshire, Evolution of carbon structure in chemically activated wood, Carbon, 33 (1995) 1247–1254.
  27. J. Gülen, F. Zorbay, Methylene blue adsorption on a low cost adsorbent-carbonized peanut shell, Water Environ. Res., 89 (2017) 805–816.
  28. L.-Y. Hsu, H. Teng, Influence of different chemical reagents on the preparation of activated carbons from bituminous coal, Fuel Process. Technol., 64 (2000) 155–166.
  29. W.-C. Tan, R. Othman, A. Matsumoto, F.-Y. Yeoh, The effect of carbonisation temperatures on nanoporous characteristics of activated carbon fibre (ACF) derived from oil palm empty fruit bunch (EFB) fibre, J. Therm. Anal. Calorim., 108 (2012) 1025–1031.
  30. V.M. Gun’ko, V.V. Turo, O.P. Kozynchenko, V.G. Nikolaev, S.R. Tennison, S.T. Meikle, E.A. Snezhkova,
    A.S. Sidorenko, F. Ehrburger-Dolle, I. Morfin, D.O. Klymchuk, S.V. Mikhalovsky, Activation and structural and adsorption features of activated carbons with highly developed micro-, meso- and macroporosity, Adsorption, 17 (2011) 453–460.
  31. S.A. Mirzaee, B. Bayati, M.R. Valizadeh, H.T. Gomes, Z. Noorimotlagh, Adsorption of diclofenac on mesoporous activated carbons: physical and chemical activation, modeling with genetic programming and molecular dynamic simulation, Chem. Eng. Res. Des., 167 (2021) 116–128.
  32. N. Jaafarzadeh, Z. Baboli, Z. Noorimotlagh, S. Silva Martínez, M. Ahmadi, S. Alavi, S.A. Mirzaee, Efficient adsorption of bisphenol A from aqueous solutions using low-cost activated carbons produced from natural and synthetic carbonaceous materials, Desal. Water Treat., 154 (2019) 177–187.
  33. A. Özer, G. Dursun, Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon, J. Hazard. Mater., 146 (2007) 262–269.
  34. J. Sahar, A. Naeem, M. Farooq, S. Zareen, S. Sherazi, Kinetic studies of graphene oxide towards the removal of rhodamine B and congo red, Int. J. Environ. Anal. Chem., 101 (2021) 1258–1272.
  35. R.K. Sheshdeh, M.R.K. Nikou, K. Badii, N.Y. Limaee, G. Golkarnarenji, Equilibrium and kinetics studies for the adsorption of Basic Red 46 on nickel oxide nanoparticlesmodified diatomite in aqueous solutions, J. Taiwan Inst. Chem. Eng., 45 (2014) 1792–1802.
  36. M. Zamouche, L. Mouni, A. Ayachi, I. Merniz, Use of commercial activated carbon for the purification of synthetic water polluted by a pharmaceutical product, Desal. Water Treat., 172 (2019) 86–95.
  37. H. Ali, S.K. Muhammad, Biosorption of crystal violet from water on leaf biomass of Calotropis procera, J. Environ. Sci. Technol., 1 (2008) 143–150.
  38. N.V. Suc, D.K. Chi, Removal of rhodamine B from aqueous solution via adsorption onto microwave-activated rice husk ash, J. Dispersion Sci. Technol., 38 (2016) 216–222.
  39. O.S. Bello, K.A. Adegoke, O.O. Sarumi, O.S. Lameed, Functionalized locust bean pod (Parkia biglobosa) activated carbon for Rhodamine B dye removal, Heliyon, 5 (2019) e02323, doi: 10.1016/j.heliyon.2019.e02323.
  40. D. Naghipour, A. Amouei, K.T. Ghasemi, K. Taghavi, Removal of metoprolol from aqueous solutions by the activated carbon prepared from pine cones, Environ. Health Eng. Manage. J., 6 (2019) 81–88.
  41. S. Bousba, A.-H. Meniai, Adsorption of 2-chlorophenol onto sewage sludge based adsorbent: equilibrium and kinetic study, Chem. Eng. Trans., 35 (2013) 854–869.
  42. C.-H. Weng, Y.-T. Lin, T.-W. Tzeng, Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder, J. Hazard. Mater., 170 (2009) 417–424.
  43. E.K. Guechi, Equilibrium, kinetics and mechanism for the removal of Rhodamine B by adsorption on Okoume (Aucoumea klaineana) sawdust from aqueous media, Desal. Water Treat., 94 (2017) 164–173.
  44. M. Daneshkhah, H. Hossaini, M. Malakootian, Removal of metoprolol from water by sepiolite-supported nanoscale zerovalent iron, J. Environ. Chem. Eng., 5 (2017) 3490–3499.
  45. M. Pedrosa, R.S. Ribeiro, S. Guerra-Rodríguez, J. Rodríguez-Chueca, E. Rodríguez, A.M.T. Silva, M. Ðolic,
    A.R. Lado, Spirulina-based carbon bio-sorbent for the efficient removal of metoprolol, diclofenac and other micropollutants from wastewater, Environ. Nanotechnol. Monit. Manage., 18 (2022) 100720, doi:10.1016/j.enmm.2022.100720.
  46. M. Ghaedi, J. Tashkhourian, A.A. Pebdani, B. Sadeghian, F.N. Ana, Equilibrium, kinetic and thermodynamic study of removal of reactive orange 12 on platinum nanoparticle loaded on activated carbon as novel adsorbent, Korean J. Chem. Eng., 28 (2011) 2255–2261.
  47. T. Shojaeimehr, F. Rahimpour, M.A. Khadivi, M. Sadeghi, A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA), J. Ind. Eng. Chem., 20 (2013) 870–880.
  48. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. ASCE, 89 (1963) 31–59.
  49. S.S. Vieira, Z.M. Magriotis, N.A.V. Santos, M. das Graças Cardoso, A. Saczk, Macauba palm (Acrocomia aculeata) cake from biodiesel processing: an efficient and low cost substrate for the adsorption of dyes, Chem. Eng. J., 183 (2012) 152–161.
  50. S. Zafara, Kinetic, equilibrium and thermodynamic studies for adsorption of nickel ions, Desal. Water Treat., 167 (2019) 277–290.
  51. S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphates release and sorption in soils, Soil Sci. Soc. Am. J., 44 (1980) 265–268.
  52. F. Deniz, D.S. Saygideger, Investigation of adsorption characteristics of Basic Red 46 onto gypsum: equilibrium, kinetic and thermodynamic studies, Desalination, 262 (2010) 161–165.
  53. A. Benhouria, M.A. Islama, H. Zaghouane-Boudiaf, M. Boutahala, B.H. Hameed, Calcium alginate–bentonite– activated carbon composite beads as highly effective adsorbent for methylene blue, Chem. Eng. J., 270 (2015) 621–630.
  54. L. Largitte, R. Pasquier, A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon, Chem. Eng. Res. Des., 109 (2016) 495–504.
  55. C.H. Giles, D. Smith, A. Huiston, A general treatment and classification of the solute adsorption isotherm, J. Colloid Interface Sci., 47 (1974) 755–765.
  56. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. (Resumed), 11 (1960) 3973–3993.
  57. S.N. Souissi, A. Ouderni, A. Ryel, Adsorption of dyes onto activated carbon prepared from olive stone, J. Environ. Sci., 17 (2005) 998–1003.
  58. P. Senthil Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Desalination, 261 (2010) 52–60.
  59. B. Belhamdi, Z. Merzougui, M. Trari, A. Addoun, A kinetic, equilibrium and thermodynamic study of
    L-phenylalanine adsorption using activated carbon based on agricultural waste (date stones), J. Appl. Res. Technol., 14 (2016) 354–366.
  60. Z. Anfar, M. Zbair, H. Ait Ahsaine, M. Ezahri, N. El Alem, Well-designed WO3/activated carbon composite for Rhodamine B removal: synthesis, characterization, and modelling using response surface methodology, Fullerenes Nanotubes Carbon Nanostruct., 26 (2018) 389–397.
  61. V. Vimonses, S.M. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J., 148 (2009) 354–364.
  62. H. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 358–471.
  63. J. Guo, S. Chen, L. Liu, B. Li, P. Yang, L. Zhang, Y. Feng, Adsorption of dye from wastewater using chitosan–CTAB modified bentonites, J. Colloid Interface Sci., 382 (2012) 61–66.
  64. J.F. Duarte Neto, I.D.S. Pereira, V.C. da Silva, H.C. Ferreira, G. de A. Neves, R.R. Menezes, Study of equilibrium and kinetic adsorption of Rhodamine B onto purified bentonite clays, Cerâmica, 64 (2018) 598–607.
  65. L.Z. Lee, M.A.A. Zaini, Rhodamine B dyes adsorption on palm kernel shell based activated carbons, Malaysian J. Fundam. Appl. Sci., 15 (2019) 743–747.
  66. M.C. Ncibi, A.M. Ben Hamissa, A. Fathallah, M.H. Kortas, T. Baklouti, B. Mahjoub, M. Seffen, Biosorptive uptake of methylene blue using Mediterranean green alga Enteromorpha spp., J. Hazard. Mater., 170 (2009) 1050–1055.
  67. J. Shah, M. Rasul Jan, A. Haq, Y. Khan, Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies, Front. Chem. Sci. Eng., 7 (2013) 428–436.
  68. K. Fujiwara, A. Ramesh, T. Maki, H. Hasegawa, K. Ueda, Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto L-lysine modified crosslinked chitosan resin, J. Hazard. Mater., 146 (2006) 39–50.
  69. S. Doyurum, A. Celik, Pb(II) and Cd(II) removal from aqueous solutions by olive cake, J. Hazard. Mater., 138 (2006) 22–28.
  70. B.H. Hameed, Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay, Colloids Surf., A, 307 (2007) 45–52.
  71. T. Phatthanakittiphong, G.T. Seo, Characteristic evaluation of graphene oxide for Bisphenol A adsorption in aqueous solution, Nanomaterials (Basel), 6 (2016) 128, doi: 10.3390/nano6070128.
  72. K. Vijayaraghavan, Y.-S. Yun, Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp., Dyes Pigm., 76 (2008) 726–732.