References

  1. H. Liu, J. Xia, K. Cui, J. Meng, R. Zhang, B. Cao, P. Li, Fabrication of high-performance pervaporation membrane for sulfuric acid recovery via interfacial polymerization, J. Membr. Sci., 624 (2021) 119108, doi:10.1016/J.MEMSCI.2021.119108.
  2. H. Guo, P. Yuan, V. Pavlovic, J. Barber, Y. Kim, Ammonium sulfate production from wastewater and low-grade sulfuric acid using bipolar- and cation-exchange membranes, J. Cleaner Prod., 285 (2021) 124888, doi:10.1016/J.JCLEPRO.2020.124888.
  3. T. Ouyang, J. Xu, Z. Su, Z. Zhao, G. Huang, C. Mo, A novel design of low-grade waste heat utilization for coal-fired power plants with sulfuric acid recovery, Energy Convers. Manage., 227 (2021) 113640, doi:10.1016/j.enconman.2020.113640.
  4. A. Bamasag, H. Daghooghi-Mobarakeh, T. Alqahtani, P. Phelan, Performance enhancement of a submerged vacuum membrane distillation (S-VMD) system using low-power ultrasound, J. Membr. Sci., 621 (2021) 119004, doi: 10.1016/j.memsci.2020.119004.
  5. G. Viader, O. Casal, B. Lefèvre, N. de Arespacochaga, C. Echevarría, J. López, C. Valderrama, J.L. Cortina, Integration of membrane distillation as volume reduction technology for in-land desalination brines management: pre-treatments and scaling limitations, J. Environ. Manage., 289 (2021) 112549,
    doi:10.1016/J.JENVMAN.2021.112549.
  6. P. Boutikos, E.Sh. Mohamed, E. Mathioulakis, V. Belessiotis, A theoretical approach of a vacuum multi-effect membrane distillation system, Desalination, 422 (2017) 25–41.
  7. E.S. Mohamed, P. Boutikos, E. Mathioulakis, V. Belessiotis, Experimental evaluation of the performance and energy efficiency of a vacuum multi-effect membrane distillation system, Desalination, 408 (2017) 70–80.
  8. J.-P. Mericq, S. Laborie, C. Cabassud, Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination, Chem. Eng. J., 166 (2011) 596–606.
  9. H. Dahmardeh, H.A. Akhlaghi Amiri, S.M. Nowee, Evaluation of mechanical vapor recompression crystallization process for treatment of high salinity wastewater, Chem. Eng. Process., 145 (2019) 107682, doi:10.1016/j.cep.2019.107682.
  10. Y. Kansha, A. Kishimoto, A. Tsutsumi, Application of the self-heat recuperation technology to crude oil distillation, Appl. Therm. Eng., 43 (2012) 153–157.
  11. S. Ai, B. Wang, X. Li, W. Shi, Numerical analysis on the performance of mechanical vapor recompression system for strong sodium chloride solution enrichment, Appl. Therm. Eng., 137 (2018) 386–394.
  12. L. Liang, D. Han, R. Ma, Treatment of high-concentration wastewater using double-effect mechanical vapor recompression, Desalination, 314 (2013) 139–146.
  13. J. Yang, C. Zhang, Z. Zhang, L. Yang, Electroplating wastewater concentration system utilizing mechanical vapor recompression, J. Environ. Eng., 144 (2018) 04018053, doi: 10.1061/(ASCE) EE.1943-7870.0001380.
  14. D. Han, J. Chen, T. Zhou, Experimental investigation of a batched mechanical vapor recompression evaporation system, Appl. Therm. Eng., 192 (2021) 116940, doi: 10.1016/j.applthermaleng.2021.116940.
  15. Y. Zhou, C. Shi, G. Dong, Analysis of a mechanical vapor recompression wastewater distillation system, Desalination, 353 (2014) 91–97.
  16. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, Thermoeconomic design of a multi-effect evaporation mechanical vapor compression (MEE–MVC) desalination process, Desalination, 230 (2008) 1–15.
  17. Y. Zhang, Y. Peng, S. Ji, Z. Li, P. Chen, Review of thermal efficiency and heat recycling in membrane distillation processes, Desalination, 367 (2015) 223–239.
  18. J.A. Leon, R. Palacios-Bereche, S.A. Nebra, Batch pervaporative fermentation with coupled mebrane and its influence on energy consumption in permeate recovery and distillation stage, Energy, 109 (2016) 77–91.
  19. Y. Wang, B. Qiu, Z. Xiao, J. Liu, S. Fan, Hybrid desalination system of mechanical vapor recompression based on membrane distillation, Membr. Water Treat., 12 (2021) 115–123.
  20. J. Li, W. Zhou, S. Fan, Z. Xiao, Y. Liu, J. Liu, B. Qiu, Y. Wang, Bioethanol production in vacuum membrane distillation bioreactor by permeate fractional condensation and mechanical vapor compression with polytetrafluoroethylene (PTFE) membrane, Bioresour. Technol., 268 (2018) 708–714.
  21. Z. Si, D. Han, Y. Song, J. Chen, L. Luo, R. Li, Experimental investigation on a combined system of vacuum membrane distillation and mechanical vapor recompression, Chem. Eng. Process., 139 (2019) 172–182.
  22. Z. Si, D. Han, J. Gu, Y. Song, Exergy analysis of a vacuum membrane distillation system integrated with mechanical vapor recompression for sulfuric acid waste treatment, Appl. Therm. Eng., 178 (2020) 115516, doi: 10.1016/j.applthermaleng.2020.115516.
  23. Z. Si, D. Han, J. Xiang, Experimental investigation on the mechanical vapor recompression evaporation system coupled with multiple vacuum membrane distillation modules to treat industrial wastewater, Sep. Purif. Technol., 275 (2021) 119178, doi: 10.1016/j.seppur.2021.119178.
  24. Z. Si, D. Han, J. Gu, Y. Song, P. Zhang, Characteristics analysis of a combined system of vacuum membrane distillation and mechanical vapor recompression, Desal. Water Treat., 171 (2019) 29–43.
  25. Z. Si, D. Han, Y. Xing, J. Xiang, Experimental and numerical study on thermodynamic characteristics of a vacuum membrane distillation system based on mechanical vapor recompression for sulfuric acid waste, Chem. Eng. Process., 174 (2022) 108862, doi: 10.1016/j.cep.2022.108862.
  26. V. Karanikola, S.E. Moore, A. Deshmukh, Economic performance of membrane distillation configurations in optimal solar thermal desalination systems, Desalination, 472 (2019) 114164, doi:10.1016/j.desal.2019.114164.
  27. M.M.A. Shirazi, A. Kargari, M. Tabatabaei, Evaluation of commercial PTFE membranes in desalination by direct contact membrane distillation, Chem. Eng. Process., 76 (2014) 16–25.
  28. U.K. Kesieme, N. Milne, C.Y. Cheng, Recovery of water and acid from leach solutions using direct contact membrane distillation, Water. Sci. Technol., 69 (2013) 868–875.
  29. X. Li, Y. Qin, R. Liu, Study on concentration of aqueous sulfuric acid solution by multiple-effect membrane distillation, Desalination, 307 (2012) 34–41.
  30. J.I. Mengual, M. Khayet, M.P. Godino, Heat and mass transfer in vacuum membrane distillation, Int. J. Heat Mass Transfer, 47 (2004) 865–875.
  31. R.H. Liu, D. Chen, Y.L. Peng, Mathematical modeling and optimal operation condition analysis of heat pump two-effect direct contact membrane distillation system, Mater. Sci. Eng., 612 (2019) 032004, doi:10.1088/1757-899X/612/3/032004.
  32. S.Gh. Lovineh, M. Asghari, B. Rajaei, Numerical simulation and theoretical study on simultaneous effects of operating parameters in vacuum membrane distillation, Desalination, 314 (2013) 59–66.
  33. W.K. Pang, W.J. Ling, Q.L. Pan, Performance analysis of mechanical vapor recompression heat pump driven by centrifuge fan, J. Mech. Eng., 49 (2013) 142–146 (in Chinese).
  34. R. Miladi, N. Frikha, S. Gabsi, Exergy analysis of a solarpowered vacuum membrane distillation unit using two models, Energy, 120 (2017) 872–883.
  35. D. Han, W.F. He, C. Yue, W.H. Pu, Study on desalination of zero-emission system based on mechanical vapor compression, Appl. Energy, 185 (2017) 1490–1496.
  36. J. Lin, G. Qin, C. Jia, Design and experimental analysis of a vapor compression heat pump combined with double‐stage forced‐circulation evaporators, Energy Sci. Eng., 6 (2018) 523–534.