References

  1. G.A. Khoury, T.C. Gehris, L. Tribe, R.M. Torres Sánchez, M.S. dos Santos Afonso, Glyphosate adsorption on montmorillonite: an experimental and theoretical study of surface complexes, Appl. Clay Sci., 50 (2010) 167–175.
  2. J. Rendon-von Osten, R. Dzul-Caamal, Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico, Int. J. Environ. Res. Public Health, 14 (2017) 595–608.
  3. F. Braghiroli, H. Bouafif, C. Neculita, A. Koubaa, Activated biochar as an effective sorbent for organic and inorganic contaminants in water, Water Air Soil Pollut., 229 (2018) 1–22.
  4. M.N. Rashed, Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater,
    M. Nageeb Rashed, Ed., Organic Pollutants-Monitoring, Risk and Treatment, InTechOpen, 2013, pp. 167–194.
  5. M. Ahmad, S.S. Lee, A.U. Rajapaksha, M. Vithanage, M. Zhang, J.S. Cho, S.E. Lee, K.S. Ok, Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures, Bioresour. Technol., 143 (2013) 615–622.
  6. B. Sajjadi, T. Zubatiuk, D. Leszczynska, J. Leszczynski, W.Y. Chen, Chemical activation of biochar for energy and environmental applications: a comprehensive review, Rev. Chem. Eng., 35 (2019) 777–815.
  7. W.J. Liu, H. Jiang, H.Q. Yu, Development of biochar-based functional materials: toward a sustainable platform carbon material, Chem. Rev., 115 (2015) 12251–12285.
  8. K.A. Thompson, K.K. Shimabuku, J.P. Kearns, D.R.U. Knappe, R.S. Summers, S.M. Cook, Environmental comparison of biochar and activated carbon for tertiary wastewater treatment, Environ. Sci. Technol., 50 (2016) 11253–11262.
  9. Q.A. Binh, H. Nguyenb, Investigation the isotherm and kinetics of adsorption mechanism of herbicide
    2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar, Bioresour. Technol. Rep., 11 (2020) 100520, doi:10.1016/j.biteb.2020.100520.
  10. A.S.I.A. Magid, I.M. Shafiqul, C. Yali, W. Liping, S. Yang, C. Xingping, Z. Bin, M. Jie, L. Yongtao, Competitive adsorption of dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) onto fresh and oxidized corncob biochar, Chemosphere, 280 (2021) 130639, doi: 10.1016/j.chemosphere.2021.130639.
  11. B.S. Giri, S. Gun, S. Pandey, A. Trivedi, R.T. Kapoor, R.P. Singh, O.M. Abdelbayem, E.R. Rene, S. Yadav, P. Chaurvedi, N. Sharma, R.S. Singh. Reusability of brilliant green dye contaminated wastewater using corncob biochar and Brevibacillus parabrevis: hybrid treatment and kinetic studies, Bioengineered, 11 (2020) 743–758.
  12. T. Suwunwong, N. Hussain, S. Chantrapromma, K. Phoungthong, Facile synthesis of corncob biochar via
    in-house modified pyrolysis for removal of methylene blue in wastewater, Mater. Res. Express, 7 (2020) 15518.
  13. J. Wang, S. Wang, Preparation, modification and environmental application of biochar: a review, J. Cleaner Prod., 227 (2019) 1002–1022.
  14. L. Zhu, N. Zhao, L. Tong, Y. Lv, G. Li, Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid, Chemosphere (Oxford), 210 (2018) 734–744.
  15. J. Alcañiz-Monge, M.C. Román-Martínez, M.Á. Lillo-Ródenas, Chemical activation of lignocellulosic precursors and residues: what else to consider?, Molecules (Basel, Switzerland), 27 (2022) 1630, doi:10.3390/molecules27051630.
  16. J.S. Cha, S.H. Park, S.H. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park, Production and utilization of biochar:
    a review, J. Ind. Eng. Chem. (Seoul, Korea), 40 (2016) 1–15.
  17. G. Chu, J. Zhao, Y. Huang, D. Zhou, Y. Liu, M. Wu, H. Peng, Q. Zhao, B. Pan, C.E.W. Steinberg, Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores, Environ. Pollut., 240 (2018) 1–9.
  18. Q. Meng, Y. Zhang, D. Meng, X. Liu, Z. Zhang, P. Gao, A. Lin, L. Hou, Removal of sulfadiazine from aqueous solution by in situ activated biochar derived from cotton shell, Environ. Res., 191 (2020) 110104, doi:10.1016/j.envres.2020.110104.
  19. Y. Ma, P. Li, L. Yang, L. Wu, L. He, F. Gao, X. Qi, Z. Zhang, Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal, Ecotoxicol. Environ. Saf., 196 (2020) 110550, doi: 10.1016/j.ecoenv.2020.110550.
  20. H.H. Cho, K. Wespasnick, B.A. Smith, F.K. Bangash, D.H. Fairbrother, W.P. Ball, Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon, Langmuir, 26 (2010) 967–981.
  21. K. Sen, J.K. Datta, N.K. Mondal, Glyphosate adsorption by Eucalyptus camaldulensis bark/mediated char and optimization through response surface modeling, Appl. Water Sci., 9 (2019) 162,
    doi: 10.1007/s13201-019-1036-3.
  22. J. Iqbal; B.M. Al Hajeri, N.S. Shah, K. Wilson, C. Xavier, J. Shaalan, A.A. Al-Taani, F. Howari, Y. Nazzal, Preparation of H3PO4 modified Sidr biochar for the enhanced removal of ciprofloxacin from water, Int. J. Phytorem., 24 (2022) 1231–1242.
  23. N. Farhaneem, M.F. Dimin, A. Shaaban, N. Mohamad, Optimization of phosphoric acid treatment biochar using response surface method, Int. J. Adv. Manuf. Technol., 12 (2018) 453–466.
  24. S.S. Mayakaduwa, P. Kumarathilaka, I. Herath, M. Ahmad, M. Al-Wabel, Y.S. Ok, A. Usman, A. Abduljabbar,
    M. Vithanage, Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal, Chemosphere (Oxford), 144 (2016) 2516–2521.
  25. X. Jiang, Z. Ouyang, Z. Zhang, C. Yang, X. Li, Z. Dang, P. Wu, Mechanism of glyphosate removal by biochar supported nanozero-valent iron in aqueous solutions, Colloids Surf., A, 547 (2018) 64–72.
  26. G. Herath, D. Anjali, L.S. Poh, W.J. Ng, Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology, Chemosphere (Oxford), 227 (2019) 533–540.
  27. Y. Rajesh, U. Ramagopal, Effect of surfactant and sonication on Pd(II) adsorption from synthetic electroless plating solutions using commercial activated charcoal adsorbent, Desal. Water Treat., 57 (2016) 26073–26088.
  28. M. Nourouzi, M.T.G. Chuah, T.Y. Choong, Adsorption of glyphosate onto activated carbon derived from waste newspaper, Desal. Water Treat., 24 (2010) 321–326.
  29. P.F. De Sales, A.C. Bertoli, F.M. Pinto, Z.M. Magriotis, Produção, Caracterização e Aplicação do Carvão Ativado Obtido a partir do Sabugo De Milho: a busca pelo reaproveitamento de um resíduo agroindustrial, Rev. Virtual Quim., 7 (2015) 1174–1188.
  30. D.F. Tzaskos, C. Marcovicz, N.M.P. Dias, N.D. Rosso, Development of sampling for quantification of glyphosate in natural waters, Ciênc. Agrotec., 36 (2012) 399–405.
  31. P. Marin, B.C.E. Wudich, A.N. Módenes, S.P.D. Oliveira, L.S. Figueiredo, N. Passaia, Avaliação do Efeito da Temperatura, pH e Granulometria do Adsorvente na Adsorção do Corante Azul Reativo 5G, Engevista, 17 (2015) 59–68.
  32. J. Park, J.R. Regalbuto, A simple, accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness, J. Colloid Interface Sci., 175 (1995) 239–252.
  33. K.E. Hall, K.A. Spokas, B. Gamiz, L. Cox, S.K. Papiernik, W.C. Koskinen, Glyphosate sorption/desorption on biochars– interactions of physical and chemical processes, Pest Manage. Sci., 74 (2018) 1206–1212.
  34. G.L. Dotto, L.G. Vieira, L.A.A. Pinto, Kinetics and mechanism of tartrazine adsorption onto chitin and chitosan, Ind. Eng. Chem. Res., 51 (2012) 6862–6868.
  35. Y. Deng, M. Li, Z. Zhang, Q. Liu, K. Jiang, J. Tian, Y. Zhang, F. Ni, Comparative study on characteristics and mechanism of phosphate adsorption on Mg/Al modified biochar, J. Environ. Chem. Eng., 9 (2021) 105079, doi: 10.1016/j.jece.2021.105079.
  36. K.C. Castro, A.S. Cossolin, H.C.O. Reis, E.B. Morais, Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery, Braz. Arch. Biol. Technol., 60 (2017) 1–13.
  37. Y.S. Ho, C.C. Wang, Sorption equilibrium of mercury onto ground-up tree fern, J. Hazard. Mater., 156 (2008) 398–404.
  38. F. Güzel, H. Sayğili, S.G. Akkaya, F. Koyuncu, Y. Cumal, Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution, J. Cleaner Prod., 144 (2017) 260–265.
  39. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  40. D.M. Ruthven, Principles of Adsorption and Adsorption Process, John Wiley & Sons, New York, 1984.
  41. C.R. Zhou, G.P. Li, D.G. Jiang, Study on behavior of alkalescent fiber FFA-1 593 adsorbing glyphosate from production wastewater of glyphosate, Fluid Phase Equilib., 362 (2014) 69–73.
  42. F. Ates, O. Özcan, Preparation and characterization of activated carbon from poplar sawdust by chemical activation: comparison of different activating agents and carbonization temperature, Eur. J. Eng. Technol. Res., 3 (2018) 6–11.
  43. Suhas, P.J.M. Carrott, M.M.L.R. Carrott, R. Singh, L.P. Singh, M. Chaudhary, An innovative approach to develop microporous activated carbons in oxidizing atmosphere, J. Cleaner Prod., 156 (2017) 549–555.
  44. I. Herath, P. Kumarathilaka, M.I. Al-Wabel, A. Abduljabbar, M. Ahmad, A.R.A. Usman, M. Vithanage, Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar, Microporous Mesoporous Mater., 225 (2016) 280–288.
  45. P. Kumar, H. Singh, M. Kapur, M.K. Mondal, Comparative study of Malathion removal 605 from aqueous solution by agricultural and commercial adsorbents, J. Water Process Eng., 3 (2014) 67–73.
  46. N.U. Yamaguchi, R. Bergamasco, S. Hamoudi, Magnetic MnFe2O4-graphene hybrid composite for efficient removal of glyphosate from water, Chem. Eng. J., 295 (2016) 391–402.
  47. S.M. Yakout, G.S. El-Deen, Characterization of activated carbon prepared by phosphoric acid activation of olive stones, Arabian J. Chem., 9 (2011) S1155–S1162.
  48. H. Zeng, H. Zeng, H. Zhang, A. Shahab, K. Zhang, Y. Lu, I. Nabi, F. Naseem, H. Ullah, Efficient adsorption of Cr(VI) from aqueous environments by phosphoric acid activated eucalyptus biochar, J. Cleaner Prod., 286 (2021) 124964, doi: 10.1016/j.jclepro.2020.124964.
  49. O. Yang, P. Wu, J. Liu, S. Rehman, Z. Ahmed, B. Ruan, N. Zhu, Batch interaction of emerging tetracycline contaminant with novel phosphoric acid activated corn straw porous carbon: adsorption rate and nature of mechanism, Environ. Res., 181 (2020) 108899, doi: 10.1016/j.envres.2019.108899.
  50. Z. Lu, H. Zhang, A. Shahab, K. Zhang, H. Zeng, A.Z.U.R. Bacha, I. Nabi, H. Ullah, Comparative study on characterization and adsorption properties of phosphoric acid activated biochar and nitrogen-containing modified biochar employing Eucalyptus as a precursor, J. Cleaner Prod., 303 (2021) 127046, doi:10.1016/j.jclepro.2021.127046.
  51. R. Yang, G. Liu, X. Xu, M. Li, J. Zhang, X. Hao, Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibers prepared by phosphoric acid activation, Biomass Bioenergy, 35 (2011) 437–631.
  52. H. Niu, H. Jin, Q. Sun, Y. Shi, X. Zhang, Y. Cai, Activation of biochars by waste phosphoric acids: an integrated disposal route of waste acids and solid waste, ACS Sustainable Chem. Eng., 9 (2021) 16403–16414.
  53. N.U. Yamaguchi, A.J. Rubio, R. Bergamasco, Carvão Ativado Impregnado com Manganês e Ferro para Adsorção de Glifosato: Cinética, isotermas e estudos termodinâmicos, Rev. Ambient e Água, 14 (2019) 1–6.
  54. M. Reck, R.M. Paixão, R. Bergamasco, M.F. Vieira, A.M.V. Salcedo, Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds, J. Cleaner Prod., 171 (2018) 85–97.
  55. S. Chen, C. Qin, T. Wang, F. Chen, X. Li, H. Hou, M. Zhou, Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism, J. Mol. Liq., 285 (2019) 62–74.
  56. M.D.G. De Luna, M.F. Divinagracia, A.E.C. Sy, D.C. Ong, W. Chung, Applicability of composite silica–divinylbenzene in bioethanol dehydration: equilibrium, kinetic, thermodynamic, and regeneration analysis, Energy Fuels, 33 (2019) 7347–7356.
  57. T. Akar, A.S. Ozcan, S. Tunali, A. Ozcan, Biosorption of a textile dye (acid blue 40) by cone biomass of Thuja orientalis: estimation of equilibrium, thermodynamic and kinetic parameters, Bioresour. Technol., 99 (2008) 3057–3065.
  58. P. Zhang, Y. Li, Y. Cao, L. Han, Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures, Bioresour. Technol., 285 (2019) 121348, doi:10.1016/j.biortech.2019.121348.
  59. F.X. Chen, C.R. Zhou, G.P. Li, F.F. Peng, Thermodynamics and kinetics of glyphosate adsorption on Resin D301, Arabian J. Chem., 9 (2016) S1665–S1669.
  60. M. Vithanage, S.S. Mayakaduwa, I. Herath, Y.S. Ok, D. Mohan, Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks, Chemosphere (Oxford), 150 (2015) 781–789.
  61. I.A.W. Tan, B.H. Hameed, A.L. Ahamed, Equilibrium and kinetic studies on basic dye 568 adsorption by oil palm fibre activated carbon, Chem. Eng. J., 127 (2007) 111–119.
  62. N. Azouaou, Z. Sadaoui, A. Djaafri, H. Mokaddem, Adsorption of cadmium from aqueous 661 solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics, J. Hazard. Mater., 184 (2010) 126–134.