References

  1. X.M. Hua, X.L. Jiang, Characteristics and control countermeasures of pesticide pollution and its damage on environment in China, Res. Environ. Sci., 13 (2000) 40–43.
  2. J. Fenik, M. Tankiewicz, M. Biziuk, Properties and determination of pesticides in fruits and vegetables, TrAC, Trends Anal. Chem., 30 (2011) 814–826.
  3. X. He, Y.F. Ma, H.X. Zhao, X.J. Nie, Simultaneous determination of 24 pesticide residues in environmental water using solidphase extraction and high-performance liquid chromatographytandem mass spectrometry, J. Inst. Anal., 36 (2017) 1487–1493.
  4. O. Golge, B. Kabak, Determination of 115 pesticide residues in oranges by high-performance liquid chromatography–triple quadrupole mass spectrometry in combination with QuEChERS method, J. Food Compos. Anal., 41 (2015) 86–97.
  5. P.N. Patil, S.D. Bote, P.R. Gogate, Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation, Ultrason. Sonochem., 21 (2014) 1770–1777.
  6. M.P. Halm, A.Rortais, G. Arnold, J.N. Tasei, S. Rault, New risk assessment approach for systemic insecticides: the case of honey bees and imidacloprid (Gaucho), Environ. Sci. Technol., 40 (2006) 2448–2454.
  7. C. Segura, C. Zaror, H.D. Mansilla, M.A. Mondaca, Imidacloprid oxidation by photo-Fenton reaction, J. Hazard. Mater., 150 (2008) 679–686.
  8. T. Tisler, A. Jemec, B. Mozetic, P. Trebse, Hazard identification of imidacloprid to aquatic environment, Chemosphere, 76 (2009) 907–914.
  9. S. Rossi, A.G. Sabatini, R. Cenciarini, S. Ghini, S. Girotti, Use of high-performance liquid chromatography-UV and gas chromatography-mass spectrometry for determination of the imidacloprid content of honeybees, pollen, paper filters, grass, and flowers, Chromatographia, 61 (2005) 189–195.
  10. M. Rancan, A.G. Sabatini, G. Achilli, G.C. Galletti, Determination of Imidacloprid and metabolites by liquid chromatography with an electrochemical detector and post column photochemical reactor, Anal. Chim. Acta, 555 (2006) 20–24.
  11. M.J. Hengel, M. Miller, Analysis of pesticides in dried hops by liquid chromatography-tandem mass spectrometry, J. Agric. Food Chem., 56 (2008) 6851–6856.
  12. X.D. Yu, Y.S. Li, X.L. Liu, B. Qiao, Y.Y. Yang, Y.Y. Zhang, P. Hu, S.Y. Lu, H.L. Ren, Z.S. Liu, M.Y. Liu, Y. Zhou, Polyelectrolyte nanocapsule probe for the determination of imidacloprid in agricultural food samples, Food Agric. Immunol., 30 (2019) 432–445.
  13. K.L. Lee, M.L. You, C.H. Tsai, E.H. Lin, S.Y. Hsieh, M.H. Ho, J.C. Hsu, P.K. Wei, Nanoplasmonic biochips for rapid labelfree detection of imidacloprid pesticides with a smartphone, Biosens. Bioelectron., 75 (2016) 88–95.
  14. M.R. Kateshiya, N.I. Malek, S.K. Kailasa, Facile synthesis of highly blue fluorescent tyrosine coated molybdenum oxide quantum dots for the detection of imidacloprid pesticide, J. Mol. Liq., 319 (2020) 114329.
  15. V.N. Mehta, N. Ghinaiya, J.V. Rohit, R.K. Singhal, H. Basu, S.K. Kailasa, Ligand chemistry of gold, silver and copper nanoparticles for visual read-out assay of pesticides: a review, TrAC, Trends Anal. Chem., 153 (2022) 116607.
  16. H. Soyeurt, D. Bruwier, J.M. Romnee, N. Gengler, C. Bertozzi, D. Veselko, P. Dardenne, Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry, J. Dairy Sci., 92 (2009) 2444–2454.
  17. H.R. Xu, H.J. Wang, K. Huang, Y.B. Ying, C. Yang, H. Qian, J. Hu, Comparison of PLS and SMLR for nondestructive determination of sugar content in honey peach using NIRS, Spectrosc. Spectr. Anal., 28 (2008) 523–526.
  18. W.B. Zheng, X.P. Fu, Y.B. Ying, Spectroscopy-based food classification with extreme learning machine, Chemom. Intell. Lab. Syst., 139 (2014) 42–47.
  19. X.D. Li, W.J. Mao, W. Jiang, Extreme learning machine based transfer learning for data classification, Neurocomputing, 174 (2016) 203–210.
  20. A. Morellos, X.E. Pantazi, D. Moshou, T. Alexandridis, R. Whetton, G. Tziotzios, J. Wiebensohn, R. Bill,
    A.M. Mouazen, Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy, Biosyst. Eng., 152 (2016) 104–116.
  21. M. Basalekou, C. Pappas, P. Tarantilis, Y. Kotseridis, S. Kallithraka, Wine authentication with Fourier transform infrared spectroscopy: a feasibility study on variety, type of barrel wood and ageing time classification, Int. J. Food Sci. Technol., 52 (2017) 1307–1313.
  22. W. Ng, B. Minasny, M. Montazerolghaem, J. Padarian, R. Ferguson, S. Bailey, A.B. McBratney, Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra, Geoderma, 352 (2019) 251–267.