References

  1. M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman Jr., D. Mohan, Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods, Chem. Rev., 119 (2019) 3510–3673.
  2. X. Liu, K. Lv, C. Deng, Z. Yu, J. Shi, A.C. Johnson, Persistence and migration of tetracycline, sulfonamide, fluoroquinolone, and macrolide antibiotics in streams using a simulated hydrodynamic system, Environ. Pollut., 252 (2019) 1532–1538.
  3. J. Harrower, M. McNaughtan, C. Hunter, R. Hough, Z. Zhang, K. Helwig, Chemical fate and partitioning behavior of antibiotics in the aquatic environment - a review, Environ. Toxicol. Chem., 40 (2021) 3275–3298.
  4. J. Zhou, X. Yun, J. Wang, Q. Li, Y. Wang, A review on the ecotoxicological effect of sulphonamides on aquatic organisms, Toxicol. Rep., 9 (2022) 534–540.
  5. S.I. Polianciuc, A.E. Gurzău, B. Kiss, M.G. Ştefan, F. Loghin, Antibiotics in the environment: causes and consequences, Med. Pharm. Rep., 93 (2020) 231–240.
  6. P. Kovalakova, L. Cizmas, T.J. McDonald, B. Marsalek, M. Feng, V.K. Sharma, Occurrence and toxicity of antibiotics in the aquatic environment: a review, Chemosphere, 251 (2020) 126351, doi:10.1016/j.chemosphere.2020.126351.
  7. J. Lach, L. Stępniak, A. Ociepa-Kubicka, Antibiotics in the environment as one of the barriers to sustainable development, Problemy Ekorozwoju, 13 (2018) 197–207.
  8. L. Kergoat, P. Besse-Hoggan, M. Leremboure, J. Beguet, M. Devers, F. Martin-Laurent, M. Masson, S. Morin,
    A. Roinat, S. Pesce, C. Bonnineau, Environmental concentrations of sulfonamides can alter bacterial structure and induce diatom deformities in freshwater biofilm communities, Front. Microbiol., 7 (2021) 643719, doi:10.3389/fmicb.2021.643719.
  9. W. Duan, H. Cui, X. Jia, X. Huang, Occurrence and ecotoxicity of sulfonamides in the aquatic environment: a review, Sci. Total Environ., 820 (2022) 153178, doi: 10.1016/j.scitotenv.2022.153178.
  10. N.D. Le, A.Q. Hoang, T.T.H. Hoang, T.A.H. Nguyen, T.T. Duong, T.M.H. Pham, T.D. Nguyen, V.C. Hoang,
    T.X.B. Phung, H.T. Le, C.S. Tran, T.H. Dang, N.T. Vu, T.N. Nguyen, T.P.Q. Le, Antibiotic and antiparasitic residues in surface water of urban rivers in the Red River Delta (Hanoi, Vietnam): concentrations, profiles, source estimation, and risk assessment, Environ. Sci. Pollut. Res. Int., 28 (2021) 10622–10632.
  11. J. Lyu, L. Yang, L. Zhang, B. Ye, L. Wang, Antibiotics in soil and water in China – a systematic review and source analysis, Environ. Pollut., 266 (2020) 115147, doi: 10.1016/j.envpol.2020.115147.
  12. W. Deng, N. Li, H. Zheng, H. Lin, Occurrence and risk assessment of antibiotics in river water in Hong Kong, Ecotoxicol. Environ. Saf., 125 (2016) 121–127.
  13. P. Paíga, L.H.M.L.M. Santos, S. Ramos, S. Jorge, J.G. Silva, C. Delerue-Matos, Presence of pharmaceuticals in the Lis River (Portugal): sources, fate and seasonal variation, Sci. Total Environ., 573 (2016) 164–177.
  14. Z. Wang, Y. Du, C. Yang, X. Liu, J. Zhang, E. Li, Q. Zhang, X. Wang, Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China, Sci. Total Environ., 609 (2017) 1423–1432.
  15. A. Hossain, S. Nakamichi, M. Habibullah-Al-Mamun, K. Tani, S. Masunaga, H. Matsuda, Occurrence and ecological risk of pharmaceuticals in river surface water of Bangladesh, Environ. Res., 165 (2018) 258–266.
  16. Y.-C. Lin, W.W.-P. Lai, H.-h. Tung, A.Y.-C. Lin, Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan, Environ. Monit. Assess., 187 (2015) 256,
    doi: 10.1007/s10661-015-4497-3.
  17. P. Grenni, V. Ancona, A.B. Caracciolo, Ecological effects of antibiotics on natural ecosystems: a review, Microchem. J., 136 (2017) 25–39.
  18. B. Subedi, N. Codru, D.M. Dziewulski, L.R. Wilson, J. Xue, S. Yun, E. Braun-Howland, C. Minihane, K. Kannan,
    A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA, Water Res., 72 (2015) 28–39.
  19. J. Lyu, Y. Chen, L. Zhang, Antibiotics in drinking water and health risks — China, 2017, China CDC Wkly., 2 (2020) 413–417.
  20. L. Vergeynst, A. Haeck, P. De Wispelaere, H. Van Langenhove, K. Demeestere, Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography–magnetic sector mass spectrometry: method quality assessment and application in a Belgian case study, Chemosphere, 119 (2015) S2–S8.
  21. R. Gurke, J. Rossmann, S. Schubert, T. Sandmann, M. Rößler, R. Oertel, J. Fauler, Development
    of a SPE-HPLC–MS/MS method for the determination of most prescribed pharmaceuticals and related metabolites in urban sewage samples, J. Chromatogr. B, 990 (2015) 23–30.
  22. B. Subedi, K. Balakrishna, D.I. Joshua, K. Kannan, Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in Southern India, Chemosphere, 167 (2017) 429–437.
  23. H. Zhang, M. Du, H. Jiang, D. Zhang, L. Lin, H. Ye, X. Zhang, Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China, Environ. Sci. Processes Impacts, 17 (2015) 225–234.
  24. J. Czerwiński, A. Kłonica, J. Ozonek, Endocrine disrupting compounds (EDCs) in the aquatic environment and methods of their removal, JCEEA, 62 (2015) 27–42.
  25. M.-H. Wu, C.-J. Que, G. Xu, Y.-F. Sun, J. Ma, H. Xu, R. Sun, L. Tang, Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water, Ecotoxicol. Environ. Saf., 132 (2016) 132–139.
  26. R.B.P. Marcelino, M.M.D. Leão, R.M. Lago, C.C. Amorim, Multistage ozone and biological treatment system for real wastewater containing antibiotics, J. Environ. Manage., 195 (2017) 110–116.
  27. L. Zhu, B. Santiago-Schübel, H. Xiao, H. Hollert, S. Kueppers, Electrochemical oxidation of fluoroquinolone antibiotics: mechanism, residual antibacterial activity and toxicity change, Water Res., 102 (2016) 52–62.
  28. A.R. Rahmani, D. Nematollahi, M.R. Samarghandi, M.T. Samadi, G. Azarian, A combined advanced oxidation process: electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution, J. Electroanal. Chem., 808 (2018) 82–89.
  29. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, M. Chen, Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater, Bioresour. Technol., 214 (2016) 836–851.
  30. J. Akhtar, N.A.S. Amin, K. Shahzad, A review on removal of pharmaceuticals from water by adsorption, Desal. Water Treat., 57 (2015) 12842–12860.
  31. L.J. Borda, M. Perper, J.E. Keri, Treatment of seborrheic dermatitis: a comprehensive review, J. Dermatol. Treat., 30 (2019) 158–169.
  32. I. Nugrahani, S.S. Min, Hydrate transformation of sodium sulfacetamide and neomycin sulphate, Int. J. Pharm. Pharm. Sci., 7 (2015) 409–415.
  33. S. Ahmed, N. Anwar, M.A. Sheraz, I. Ahmad, Validation of a stability-indicating spectrometric method for the determination of sulfacetamide sodium in pure form and ophthalmic preparations, J. Pharm. Bioallied Sci., 9 (2017) 126–134.
  34. S. Agarwal, V.K. Gupta, M. Ghasemi, J. Azimi-Amin, Peganum harmala-L seeds adsorbent for the rapid removal of noxious brilliant green dyes from aqueous phase, J. Mol. Liq., 231 (2017) 296–305.
  35. N.T. Abdel-Ghani, G.A. El-Chaghaby, E.-S.A. Rawash, E.C. Lima, Adsorption of Coomassie Brilliant Blue R-250 dye onto novel activated carbon prepared from Nigella sativa L. waste: equilibrium, kinetics and thermodynamics running title: adsorption of Brilliant Blue dye onto Nigella sativa L. waste activated carbon, J. Chil. Chem. Soc., 62 (2017) 3505–3511.
  36. X. Chen, Modeling of experimental adsorption isotherm data, Information, 6 (2015) 14–22.
  37. I. Omotunde, A. Okoronkwo, O. Oluwashina, Derived and thiourea-functionalized silica for cadmium removal: isotherm, kinetic and thermodynamic studies, Appl. Water Sci., 8 (2018) 21, doi:10.1007/s13201-018-0652-7.
  38. F.S. Nworie, F.I. Nwabue, W.O. Oti, E. Mbam, B.U. Nwali, Removal of methylene blue from aqueous solution using activated rice husk biochar: adsorption isotherms, kinetics and error analysis, J. Chil. Chem. Soc., 64 (2019) 4365–4376.
  39. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  40. M.A. Ferro-García, J. Rivera-Utrilla, I. Bautista-Toledo, C. Moreno-Castilla, Adsorption of humic substances on activated carbon from aqueous solutions and their effect on the removal of Cr(III) ions, Langmuir, 14 (1998) 1880–1886.
  41. J. Lach, A. Ociepa-Kubicka, M. Mrowiec, Oxytetracycline adsorption from aqueous solutions on commercial and hightemperature modified activated carbons, Energies, 14 (2021) 3481, doi: 10.3390/en14123481.
  42. L. Sun, D. Chen, S. Wan, Z. Yu, Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids, Bioresour. Technol., 198 (2015) 300–308.
  43. Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei, L. Luo, M. Lei, L. Tang, Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling, Bioresour. Technol., 245 (2017) 266–273.
  44. W. Płaziński, W. Rudziński, Adsorption kinetics at solid/solution interfaces the meaning of the pseudo-first- and pseudo-secondorder equations, Wiadomości Chemiczne, 65 (2011) 1055–1067.
  45. J.N. Putro, Y.-H. Ju, F.E. Soetaredjo, S.P. Santoso, S. Ismadji, Biosorption, In: Green Chemistry and Water Remediation: Research and Applications, 2021, pp. 99–133.
  46. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and Interpretation of Adsorption Isotherms, J. Chem., 2017 (2017) 3039817, doi: 10.1155/2017/3039817.
  47. M.A.T. Din, M.A. Ahmad, B.H. Hameed, Ordered mesoporous carbons originated from non-edible polyethylene glycol 400 (PGE-400) for chloramphenicol antibiotic recovery from liquid phase, Chem. Eng. J., 260 (2015) 730–739.
  48. A. Chowdhury, S. Kumari, A.A. Khan, M. Ravi Chandra, S. Hussain, Activated carbon loaded with Ni-Co-S nanoparticle for superior adsorption capacity of antibiotics and dye from wastewater: kinetics and isotherms, Colloids Surf., A, 611 (2021) 125868, doi: 10.1016/j.colsurfa.2020.125868.
  49. V. Hasanzadeh, O. Rahmanian, M. Heidari, Cefixime adsorption onto activated carbon prepared by dry thermochemical activation of date fruit residues, Microchem. J., 152 (2020) 104261, doi:10.1016/j.microc.2019.104261.
  50. M. Teixidó, J.J. Pignatello, J.L. Beltrán, M. Granados, J. Peccia, Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar), Environ. Sci. Technol., 45 (2011) 10020–10027.
  51. A.U. Rajapaksha, M. Vithanage, M. Zhang, M. Ahmad, D. Mohan, S.X. Chang, Y.S. Ok, Pyrolysis condition affected sulfamethazine sorption by tea waste biochars, Bioresour. Technol., 166 (2014) 303–308.
  52. M. Xie, W. Chen, Z. Xu, S. Zheng, D. Zhu, Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions, Environ. Pollut., 186 (2014) 187–194.
  53. F.-F. Liu, J. Zhao, S. Wang, B. Xing, Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter, Environ. Pollut., 210 (2016) 85–93.
  54. J. Luo, X. Li, C. Ge, K. Müller, H. Yu, P. Huang, J. Li, D.C.W. Tsang, N.S. Bolan, J. Rinklebe, H. Wang, Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems, Bioresour. Technol., 263 (2018) 385–392.
  55. A. Yazidi, M. Atrous, F.E. Soetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G.L. Dotto, A.B. Lamine, Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis, Chem. Eng. J., 379 (2020) 122320, doi:10.1016/j.cej.2019.122320.
  56. A.T. Mohd Din, M.A. Ahmad, B.H. Hameed, Ordered mesoporous carbons originated from non-edible polyethylene glycol 400 (PEG-400) for chloramphenicol antibiotic recovery from liquid phase, Chem. Eng. J., 260 (2015) 730–739.
  57. M. Jia, F. Wang, Y. Bian, R.D. Stedtfeld, G. Liu, J. Yu, X. Jiang, Sorption of sulfamethazine to biochars as affected by dissolved organic matters of different origin, Bioresour. Technol., 248 (2018) 36–43.
  58. L. Qin, Z. Zhou, J. Dai, P. Ma, H. Zhao, J. He, A. Xie, C. Li, Y. Yan, Novel N-doped hierarchically porous carbons derived from sustainable shrimp shell for high-performance removal of sulfamethazine and chloramphenicol, J. Taiwan Inst. Chem. Eng., 62 (2016) 228–238.
  59. F. Lian, B. Sun, X. Chen, L. Zhu, Z. Liu, B. Xing, Effect of humic acid (HA) on sulfonamide sorption by biochars, Environ. Pollut., 204 (2015) 306–312.
  60. H. Zheng, Z. Wang, J. Zhao, S. Herbert, B. Xing, Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures, Environ. Pollut., 181 (2013) 60–67.