References

  1. B. Zhao, H. Xu, F. Ma, T. Zhang, X. Nan, Effects of dairy manure biochar on adsorption of sulfate onto light sierozem and its mechanisms, RSC Adv., 9 (2019) 5218–5223.
  2. H. Sereshti, E. Zamiri Afsharian, M. Esmaeili Bidhendi, H. Rashidi Nodeh, M. Afzal Kamboh, M. Yilmaz, Removal of phosphate and nitrate ions aqueous using strontium magnetic graphene oxide nanocomposite: isotherms, kinetics, and thermodynamics studies, Environ. Prog. Sustainable Energy, 39 (2020) e13332, doi:10.1002/ep.13332.
  3. P. Karthikeyan, S. Meenakshi, Synthesis and characterization of Zn–Al LDHs/activated carbon composite and its adsorption properties for phosphate and nitrate ions in aqueous medium, J. Mol. Liq., 29 (2019) 111766, doi: 10.1016/j.molliq.2019.111766.
  4. S.P. Boeykens, N. Redondo, R. Alvarado Obeso, N. Caracciolo, C. Vázquez, Chromium and lead adsorption by avocado seed biomass study through the use of total reflection X-ray fluorescence analysis, Appl. Radiat. Isot., 153 (2019) 108809, doi: 10.1016/j.apradiso.2019.108809.
  5. L. Qiu, G.R. Burton, S. Rousseau, J. Qian, Kinetics and thermodynamics of sulfate adsorption on magnetite at elevated temperatures, J. Solution Chem., 48 (2019) 1488–1502.
  6. A.H. Salami, H. Bonakdari, A. Akhbari, A. Shamshiri, S.F. Mousavi, S. Farzin, M.R. Hassanvand, A. Noori, Performance assessment of modified clinoptilolite and magnetic nanotubes on sulfate removal and potential application in natural river samples, J. Inclusion Phenom. Macrocyclic Chem., 97 (2020) 51–63.
  7. H. Qiao, L. Mei, G. Chen, H. Liu, C. Peng, F. Ke, R. Hou, X. Wan, H. Cai, Adsorption of nitrate and phosphate from aqueous solution using amine cross-linked tea wastes, Appl. Surf. Sci., 483 (2019) 114–122.
  8. WHO, Nitrate and Nitrite in Drinking-Water, World Health Organization, 2019.
  9. United States Environmental Protection Agency, US-EPA, 2018 Edition of the Drinking Water Standards and Health Advisories Tables, 2018.
  10. M.K. Sharma, M. Kumar, Sulfate contamination in groundwater and its remediation: an overview, Environ. Monit. Assess., 192 (2020) 74, doi: 10.1007/s10661-019-8051-6.
  11. P. Venkata Naga Sai Kiran, M.N. Ramu, V.S.B. Nagendra, J.S.R. Krishna, Removal of nitrates from water by environmental waste materials, Int. J. Eng. Res. Appl., 12 (2022) 48–52.
  12. O. Alagha, M.S. Manzar, M. Zubair, I. Anil, N.D. Mu’azu, A. Qureshi, Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: coexisting anions effect and mechanistic studies, Nanomaterials, 10 (2020) 336, doi: 10.3390/nano10020336.
  13. P. Mehrabinia, E. Ghanbari-Adivi, R. Fattahi, H.A. Samimi, J. Kermanezhad, Nitrate removal from agricultural effluent using sugarcane bagasse active nanosorbent, J. Appl. Water Eng. Res., 10 (2022) 238–249.
  14. N. Sooksawat, S. Santibenchakul, M. Kruatrachue, D. Inthorn, Recycling rice husk for removal of phosphate and nitrate from synthetic and swine wastewater: adsorption study and nutrient analysis of modified rice husk, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 56 (2021) 1080–1092.
  15. P. Chakraborty, S. Show, W. Ur Rahman, G. Halder, Linearity and non-linearity analysis of isotherms and kinetics for ibuprofen remotion using superheated steam and acid modified biochar, Process Saf. Environ. Prot., 126 (2019) 193–204.
  16. F. Tomul, Y. Arslan, B. Kabak, D. Trak, E. Kendüzler, E.C. Lima, H.N. Tran, Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water, Sci. Total Environ., 20 (2020) 137828, doi: 10.1016/j.scitotenv.2020.137828.
  17. P. Patel, S. Gupta, P. Mondal, Modeling of continuous adsorption of greywater pollutants onto sawdust activated carbon bed integrated with sand column, J. Environ. Chem. Eng., 10 (2022) 107155, doi:10.1016/j.jece.2022.107155.
  18. I. Fatima, M. Ahmad, M. Vithanage, S. Iqbal, Abstraction of nitrates and phosphates from water by sawdust- and rice huskderived biochars: their potential as N- and P-loaded fertilizer for plant productivity in nutrient deficient soil, J. Anal. Appl. Pyrolysis, 155 (2021) 105073, doi: 10.1016/j.jaap.2021.105073.
  19. H.A.T. Banu, P. Karthikeyan, S. Meenakshi, Comparative studies on revival of nitrate and phosphate ions using quaternized corn husk and jackfruit peel, Bioresour. Technol. Rep., 8 (2019) 100331, doi:10.1016/j.biteb.2019.100331.
  20. Y. Gao, S.-Q. Deng, X. Jin, S.-L. Cai, S.-R. Zheng, W.-G. Zhang, The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water, Chem. Eng. J., 357 (2019) 129–139.
  21. S. Dong, Q. Ji, Y. Wang, H. Liu, J. Qu, Enhanced phosphate removal using zirconium hydroxide encapsulated in quaternized cellulose, J. Environ. Sci., 89 (2020) 102–122.
  22. A.Y. Melikoğlu, S.E. Bilek, S. Cesur, Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace, Carbohydr. Polym., 215 (2019) 330–337.
  23. F. Xia, H. Yang, L. Li, Y. Ren, D. Shi, H. Chai, H. Ai, Q. He, L. Gu, Enhanced nitrate adsorption by using cetyltrimethylammonium chloride pre-loaded activated carbon, Environ. Technol., 41 (2020) 3562–3572.
  24. A. Herrera-Barros, C. Tejada-Tovar, A. Villabona-Ortíz, A.D. Gonzalez-Delgado, J. Benitez-Monroy, Cd(II) and Ni(II) uptake by novel biosorbent prepared from oil palm residual biomass and Al2O3 nanoparticles, Sustainable Chem. Pharm., 15 (2020) 100216, doi: 10.1016/j.scp.2020.100216.
  25. ASTM, ASTM D 515-60 Standard Test Method for Phosphate Ion in Water, American Society for Testing and Materials, 2018, pp. 1–4.
  26. ASTM, ASTM D 4130-15 Standard Test Method for Sulfate in Brackish Water, Seawater, and Brines, American Society for Testing and Materials, 2018, pp. 1–5.
  27. ASTM, ASTM D7781-14 Standard Test Method for Nitrite-Nitrate in Water by Nitrate Reductase, American Society for Testing and Materials, 2018, pp. 1–8.
  28. H. Ao, W. Cao, Y. Hong, J. Wu, L. Wei, Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel, Sci. Total Environ., 708 (2020) 135092, doi:10.1016/j.scitotenv.2019.135092.
  29. S. Singh, S. Perween, A. Ranjan, Dramatic enhancement in adsorption of congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate, J. Environ. Chem. Eng., 9 (2021) 105149, doi:10.1016/j.jece.2021.105149.
  30. H.A.T. Banu, P. Karthikeyan, S. Vigneshwaran, S. Meenakshi, Adsorptive performance of lanthanum encapsulated biopolymer chitosan-kaolin clay hybrid composite for the recovery of nitrate and phosphate from water, Int. J. Biol. Macromol., 154 (2020) 188–197.
  31. D. Díez, A. Urueña, R. Piñero, A. Barrio, T. Tamminen, Determination of hemicellulose, cellulose, and lignin content in different types of biomasses by thermogravimetric analysis and pseudocomponent kinetic model (TGA-PKM method), Processes, 8 (2020) 1048, doi: 10.3390/pr8091048.
  32. W. Wang, S. Yang, A. Zhang, Z. Yang, Preparation and properties of novel corn straw cellulose–based superabsorbent with waterretaining and slow-release functions, J. Appl. Polym. Sci., 137 (2020) 48951, doi:10.1002/app.48951.
  33. Y. Liu, J. Xie, N. Wu, Y. Ma, C. Menon, J. Tong, Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments, Cellulose, 26 (2019) 4707–4719.
  34. D. Ranjbar, M. Raeiszadeh, L. Lewis, M.J. MacLachlan, S.G. Hatzikiriakos, Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation, Cellulose, 27 (2020) 3211–3232.
  35. H.K. Chen, S.K. Sharma, P.R. Sharma, K. Chi, E. Fung, K. Aubrecht, N. Keroletswe, S. Chigome, B.S. Hsiao, Nitrooxidized carboxycellulose nanofibers from moringa plant: effective bioadsorbent for mercury removal, Cellulose, 28 (2021) 8611–8628.
  36. D. Balarak, M. Zafariyan, C.A. Igwegbe, K.K. Onyechi, J.O. Ighalo, Adsorption of Acid Blue 92 dye from aqueous solutions by single-walled carbon nanotubes: isothermal, kinetic, and thermodynamic studies, Environ. Process., 8 (2021) 869–888.
  37. T.J. Al-Musawi, N. Mengelizadeh, O. Al Rawi, D. Balarak, Capacity and modeling of Acid Blue 113 dye adsorption onto chitosan magnetized by Fe2O3 nanoparticles, J. Polym. Environ., 30 (2022) 344–359.
  38. Q. Yin, M. Liu, H. Ren, Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water, J. Environ. Manage., 249 (2019) 109410, doi:10.1016/j.jenvman.2019.109410.
  39. M. Yilmaz, T.J. Al-Musawi, M. Khodadadi Saloot, A.D. Khatibi, M. Baniasadi, D. Balarak, Synthesis of activated carbon from Lemna minor plant and magnetized with iron(III) oxide magnetic nanoparticles and its application in removal of ciprofloxacin, Biomass Convers. Biorefin., (2022) 1–14,
    doi:10.1007/s13399-021-02279-y.
  40. S. Barroso-Solares, B. Merillas, P. Cimavilla-Román, M.A. Rodriguez-Perez, J. Pinto, Enhanced nitrates-polluted water remediation by polyurethane/sepiolite cellular nanocomposites, J. Cleaner Prod., 254 (2020) 120038, doi: 10.1016/j.jclepro.2020.120038.