References

  1. S.S. Kalaivani, A. Muthukrishnaraj, S. Sivanesan, L. Ravikumar, Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution, Process Saf. Environ. Prot., 104 (2016) 11–23.
  2. P. Bhunia, S. Chatterjee, P. Rudra, S. De, Chelating polyacrylonitrile beads for removal of lead and cadmium from wastewater, Sep. Purif. Technol., 19 (2018) 202–213.
  3. J.T. Gu, S.J. Yuan, W.T. Shu, W. Jiang, S.W. Tang, B. Liang, S.O. Pehkonen, PVBC microspheres tethered with poly(3-sulfopropyl methacrylate) brushes for effective removal of Pb(II) ions from aqueous solution, Colloids Surf., A, 498 (2016) 218–230.
  4. F.-Q. An, R.-Y. Wu, M. Li, T.-P. Hu, J.-F. Gao, Z.-G. Yuan, Adsorption of heavy metal ions by iminodiacetic acid functionalized D301 resin: kinetics, isotherms and thermodynamics, React. Funct. Polym., 118 (2017) 42–50.
  5. V. Nejadshafiee, M.R. Islami, Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent, Mater. Sci. Eng., C, 101 (2019) 42–45.
  6. X. Yuan, C.C. Zhang, M.L. Xie, X. Li, Spatially ordered chelating resin based on liquid-crystal phase with highly selective removal of metal ions, Colloids Surf., A, 586 (2020) 124235, doi: 10.1016/j.colsurfa.2019.124235.
  7. G.L. Wang, R. Yang, Y.W. Liu, J.Y. Wang, W. Tan, X.S. Liu, Y. Jin, J.J. Qu, Adsorption of Cd(II) onto Auricularia auricula spent substrate biochar modified by CS2: characteristics, mechanism and application in wastewater treatment, J. Cleaner Prod., 367 (2022) 132882, doi: 10.1016/j.jclepro.2022.132882.
  8. M. Medykowska, M. Wiśniewska, K. Szewczuk-Karpisz, R. Panek, Interaction mechanism of heavy metal ions with the nanostructured zeolites surface – adsorption, electrokinetic and XPS studies, J. Mol. Liq., 357 (2022) 119144, doi: 10.1016/j.molliq.2022.119144.
  9. J.C. Zhang, Y.N. Chen, Uptake of Fe(III), Ag(I), Ni(II) and Cu(II) by salicylic acid-type chelating resin prepared via surface-initiated atom transfer radical polymerization, RSC Adv., 6 (2016) 69370–69380.
  10. S.S.G. Santos, M.B.B. Pereira, R.K.S. Almeida, A.G. Souza, M.G. Fonseca, M. Jaber, Silylation of
    leached-vermiculites following reaction with imidazole and copper sorption behavior, J. Hazard. Mater., 306 (2016) 406–418.
  11. A.O. Dada, F.A. Adekola, E.O. Odebunmi, F.E. Dada, O.S. Bello, A.S. Ogunlaja, Bottom-up approach synthesis of core-shell nanoscale zerovalent iron (CS-nZVI): physicochemical and spectroscopic characterization with Cu(II) ions adsorption application, MethodsX, 7 (2020) 100976, doi: 10.1016/j.mex.2020.100976.
  12. D.-Q. Cao, X. Song, X.-M. Fang, W.-Y. Yang, X.-D. Hao, E. Iritani, N. Katagiri, Membrane filtration-based recovery of extracellular polymer substances from excess sludge and analysis of their heavy metal ion adsorption properties, Chem. Eng. J., 354 (2018) 866–874.
  13. D. Iannazzo, A. Pistone, I. Ziccarelli, C. Espro, S. Galvagno, S.V. Giofré, R. Romeo, N. Cicero, G.D. Bua, G. Lanza,
    L. Legnani, M.A. Chiacchio, Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes, Environ. Sci. Pollut. Res., 24 (2017) 14735–14747.
  14. Y. Sun, Y.G. Su, Z.B. Zhao, J.X. Zhao, M. Ye, X.R. Wen, Capacitive heavy metal ion removal of 3D self-supported nitrogen-doped carbon-encapsulated titanium nitride nanorods via the synergy of faradic-reaction and electro-adsorption, Chem. Eng. J., 443 (2022) 136542, doi: 10.1016/j.cej.2022.136542.
  15. A.A. Yakout, M.A. Shaker, K.Z. Elwakeel, W. Alshitari, Response surface methodological optimization of batch Cu(II) sorption onto succinic acid functionalized SiO2 nanoparticles, Can. J. Chem., 97 (2019) 1–10, doi:10.1139/cjc-2018-0086.
  16. K.Z. Elwakeel, A.A. El-Bindary, E.Y. Kouta, E. Guibal, Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions, Chem. Eng. J., 332 (2018) 727–736.
  17. K.Z. Elwakeel, M.H. Aly, M.A. El-Howety, E. El-Fadaly, A. Al-Said, Synthesis of chitosan@activated carbon beads with abundant amino groups for capture of Cu(II) and Cd(II) from aqueous solutions, J. Polym. Environ., 26 (2018) 3590–3602.
  18. A.A. Atia, A.M. Donia, K.Z. ELwakeel, Adsorption behaviour of non-transition metal ions on a synthetic chelating resin bearing iminoacetate function, Sep. Purif. Technol., 43 (2005) 43–48.
  19. H. Zhou, H.X. Zhu, F. Xue, H. Hui, S.F. Wang, Cellulosebased amphoteric adsorbent for the complete removal of lowlevel heavy metal ions via a specialization and cooperation mechanism, Chem. Eng. J., 385 (2020) 123879, doi: 10.1016/j. cej.2019.123879.
  20. C.-Z. Zhang, H. Sheng, Y.-X. Su, J.-Q. Xu, An efficient and healthfriendly adsorbent
    N-[4-morpholinecarboximidamidoyl] carboximidamidoylmethylated polyphenylene sulfide for removing heavy metal ions from water, J. Mol. Liq., 296 (2019) 111860, doi: 10.1016/j.molliq.2019.111860.
  21. V. Nejadshafiee, M. Reza Islami, Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent, Mater. Sci. Eng., C, 101 (2019) 42–52.
  22. D. Kołodyńska, D. Fila, Z. Hubicki, Evaluation of possible use of the macroporous ion exchanger in the adsorption process of rare earth elements and heavy metal ions from spent batteries solutions, Chem. Eng. Process. Process Intensif., 147 (2020) 107767, doi: 10.1016/j.cep.2019.107767.
  23. K. Kaur, R. Jindal, Synergistic effect of organic-inorganic hybrid nanocomposite ion exchanger on photocatalytic degradation of Rhodamine-B dye and heavy metal ion removal from industrial effluents, J. Environ. Chem. Eng., 6 (2018) 7091–7101.
  24. J.C. Ma, J.W. Shen, C.Z. Wang, Y.M. Wei, Preparation of dualfunction chelating resin with high capacity and adjustable adsorption selectivity to variety of heavy metal ions, J. Taiwan Inst. Chem. Eng., 91 (2018) 532–538.
  25. B. Feist, R. Sitko, Fast and sensitive determination of heavy metal ions as batophenanthroline chelates in food and water samples after dispersive micro-solid phase extraction using graphene oxide as sorbent, Microchem. J., 147 (2019) 30–36.
  26. M. Cegłowski, B. Gierczyk, M. Frankowski, Ł. Popenda, A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions, React. Funct. Polym., 131 (2018) 64–74.
  27. O. Tavakoli, V. Goodarzi, M.S. Reza, N.M. Mohammad, R. Borja, Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger, J. Hazard. Mater., 334 (2017) 256–266.
  28. H. Chen, Y. Zhao, Q.Y. Yang, Q. Yan, Preparation of polyammonium/ sodium dithiocarbamate for the efficient removal of chelated heavy metal ions from aqueous environments, J. Environ. Chem. Eng., 6 (2018) 2344–2354.
  29. S. Lapwanit, T. Trakulsujaritchok, P.N. Nongkhai, Chelating magnetic copolymer composite modified by click reaction for removal of heavy metal ions from aqueous solution, Chem. Eng. J., 289 (2016) 286–295.
  30. C.S. Li, X.X. Li, Y. Liu, Y. Sun, Implications from the grafting density and ionic capacity effects on protein adsorption to poly(N,N-dimethylaminopropyl acrylamide)-grafted sepharose FF, Biochem. Eng. J., 157 (2020) 107546, doi: 10.1016/j. bej.2020.107546.
  31. M. Edwin, P. Sadanand, R. James, Microwave-assisted green synthesis of xanthan gum grafted diethylamino ethyl methacrylate: an efficient adsorption of hexavalent chromium, Carbohydr. Polym., 222 (2019) 114989, doi: 10.1016/j. carbpol.2019.114989.
  32. L.S. Kostenko, I.I. Tomashchuk, T.V. Kovalchuk, O.A. Zaporozhets, Bentonites with grafted aminogroups: synthesis, protolytic properties and assessing Cu(II), Cd(II) and Pb(II) adsorption capacity, Appl. Clay Sci., 172 (2019) 49–56.
  33. E. Gicquel, C. Martin, L. Heux, B. Jean, J. Bras, Adsorption versus grafting of poly(N-Isopropylacrylamide) in aqueous conditions on the surface of cellulose nanocrystals, Carbohydr. Polym., 210 (2019) 100–109.
  34. J.J. Wang, J. Wei, J. Li, Straw-supported ion imprinted polymer sorbent prepared by surface imprinting technique combined with AGET ATRP for selective adsorption of La3+ ions, Chem. Eng. J., 293 (2016) 24–33.
  35. K. Khezri, Y. Fazli, Evaluation of the effect of hydrophobically modified silica aerogel on the ARGET ATRP of styrene and butyl acrylate, Microporous Mesoporous Mater., 280 (2019) 236–242.
  36. A. Gopinath, N.A. Sultan, Fluorescent star ATRP initiators and fluorescent star poly(methyl methacrylate)s: synthesis and photophysical properties, Polymer, 153 (2018) 139–149.
  37. Y.N. Chen, W. Zhao, H. Wang, Y.H. Li, C.X. Li, Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance, R. Soc. Open Sci., 5 (2018) 171665, doi:10.1098/rsos.171665.
  38. A.O. Dada, F.A. Adekola, E.O. Odebunmi, F.E. Dada, O.M. Bello, B.A. Akinyemi, O.S. Bello, O.G. Umukoro, Sustainable and lowcost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies, Int. J. Phytorem., 22 (2020) 1524–1537.
  39. A.O. Dada, F.A. Adekola, E.O. Odebunmi, A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies, Appl. Water Sci., 7 (2015) 1409–1427.
  40. M.O. Olakunle, A.A. Inyinbor, A.O. Dada, O.S. Bello, Combating dye pollution using cocoa pod husks: a sustainable approach, Int. J. Sustainable Eng., 11 (2018) 4–15.
  41. A.L. Wang, Y. Si, H.B. Yin, J. Chen, J.C. Huo, Synthesis of Na-, Fe-, and Mg-containing titanate nanocomposites starting from ilmenite and NaOH and adsorption kinetics, isotherms, and thermodynamics of Cu(II), Cd(II), and Pb(II) cations, Mater. Sci. Eng., B, 249 (2019) 114411, doi: 10.1016/j.mseb.2019.114411.
  42. M.Y. Abdelnaeim, I.Y. El-Sherif, A.A. Attia, N.A. Fathy, M.F. El-Shahat, Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd(II), Int. J. Miner. Process., 157 (2016) 80–88.
  43. Q.Z. Zhou, B.H. Liao, L.N. Lin, W.W. Qiu, Z.G. Song, Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide–biochar composites, Sci. Total Environ., 615 (2018) 115–122.
  44. J.H. Qu, X. Tian, Z. Jiang, B. Cao, M.S. Akindolie, Q. Hu, C.C. Feng, Y. Feng, X.L. Meng, Y. Zhang, Multi-component adsorption of Pb(II), Cd(II) and Ni(II) onto microwavefunctionalized cellulose: kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification, J. Hazard. Mater., 387 (2020) 121718, doi: 10.1016/j.jhazmat.2019.121718.
  45. Y.-X. Ma, W.-J. Shao, W. Sun, Y.-L. Kou, X. Li, H.-P. Yang, Onestep fabrication of β-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(II), Cu(II) and methylene blue in aqueous solutions, Appl. Surf. Sci., 459 (2018) 544–553.
  46. A. de O. Jorgetto, A.C.P. Silva, M.H.P. Wondracek, R.I.V. Silva, E.D. Velini, M.J. Saeki, V.A. Pedrosa, G.R. Castro, Multilayer adsorption of Cu(II) and Cd(II) over Brazilian Orchid Tree (Pata-de-vaca) and its adsorptive properties, Appl. Surf. Sci., 345 (2015) 81–89.