References

  1. S. Martini, S. Afroze, Current development of sorbent derived from plant and animal waste as green solution for treating polluted aqueous media, Jurnal Teknologi, 83 (2021) 175–191.
  2. S. Hube, M. Eskafi, K.F. Hrafnkelsdóttir, B. Bjarnadóttir, M.Á. Bjarnadóttir, S. Axelsdóttir, B. Wu, Direct membrane filtration for wastewater treatment and resource recovery: a review, Sci. Total Environ., 710 (2020) 136375.
  3. F. Qu, Z. Yang, X. Li, H. Yu, Z. Pan, G. Fan, J. He, H. Rong, Membrane fouling control by UV/persulfate in tertiary wastewater treatment with ultrafiltration: a comparison with UV/hydroperoxide and role of free radicals, Sep. Purif. Technol., 257 (2021) 117877.
  4. S. Martini, H.M. Ang, Hybrid TiO2/UV/PVDF ultrafiltration membrane for raw canola oil wastewater treatment, Desal. Water Treat., 148 (2019) 51–59.
  5. S. Martini, H.M. Ang, H. Znad, Integrated ultrafiltration membrane unit for efficient petroleum refinery effluent treatment, Clean Soil Air Water, 45 (2017) 1–9.
  6. S. Huang, H.A.R. Ras, X. Tian, Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling, J. Colloid Interface Sci., 2018.
  7. K.L. Jepsen, M.V. Bram, S. Pedersen, Z. Yang, Membrane fouling for produced water treatment: a review study from a process control perspective, Water, 10 (2018) 847.
  8. O. Khalifa, F. Banat, C. Srinivasakannan, F. AlMarzooqi, S.W. Hasan, Ozonation-assisted electro-membrane hybrid reactor for oily wastewater treatment: a methodological approach and synergy effects, J. Cleaner Prod., (2020) 125764.
  9. J. Wang, X. Tang, Y. Xu, X. Cheng, G. Li, H. Liang, Hybrid UF/NF process treating secondary effluent of wastewater treatment plants for potable water reuse: adsorption vs. coagulation for removal improvements and membrane fouling alleviation, Environ. Res., 188 (2020) 109833.
  10. J.M. Ochando-Pulido, M.D. Victor-Ortega, G. Hodaifa, A. Martinez-Ferez, Physicochemical analysis and adequation of olive oil mill wastewater after advanced oxidation process for reclamation by pressure-driven membrane technology, Sci. Total Environ., 503–504 (2015) 113–121.
  11. S. Zulaikha, W.J. Lau, A.F. Ismail, J. Jaafar, Treatment of restaurant wastewater using ultrafiltration and nanofiltration membranes, J. Water Process Eng., 2 (2014) 58–62.
  12. A. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3 (2013) 189.
  13. M.I. Pariente, J.A. Melero, F. Martínez, J.A. Botas, A.I. Gallego, Catalytic wet hydrogen peroxide oxidation of a petrochemical wastewater, Water Sci. Technol., 61 (2010) 1829–1836.
  14. S. Martini, H.T. Znad, H.M. Ang, Photo-assisted Fenton process for the treatment of canola oil effluent, Chemeca 2014: Processing excellence; Powering our future, (2014) 1519.
  15. M.S. Mahtab, I.H. Farooqi, UV-TiO2 process for landfill leachate treatment: optimization by response surface methodology, Int. J. Res. Eng. Appl. Manage., 5 (2020) 14–18.
  16. W. Zhang, X. Ruan, Y. Ma, X. Jiang, W. Zheng, Y. Liu, G. He, Modeling and simulation of mitigating membrane fouling under a baffle-filled turbulent flow with permeate boundary, Sep. Purif. Technol., 179 (2017) 13–24.
  17. M.F.R. Zuthi, W. Guo, H.H. Ngo, D.L. Nghiem, F.I. Hai, S. Xia, J. Li, J. Li, Y. Liu, New and practical mathematical model of membrane fouling in an aerobic submerged membrane bioreactor, Bioresour. Technol., 238 (2017) 86–94.
  18. F. Schmitt, R. Banu, I.-T. Yeom, K.-U. Do, Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater, Biochem. Eng. J., 133 (2018) 47–58.
  19. M. Yaqub, S.H. Lee, Micellar enhanced ultrafiltration (MEUF) of mercury-contaminated wastewater: experimental and artificial neural network modeling, J. Water Process Eng., 33 (2020) 101046.
  20. A. Poznyak, I. Chairez, T. Poznyak, A survey on artificial neural networks application for identification and control in environmental engineering: Biological and chemical systems with uncertain models, Annu. Rev. Control, 48 (2019) 250–272.
  21. J. Jawad, A.H. Hawari, S. Zaidi, Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux, Desalination, 484 (2020) 114427.
  22. S. Ibrahim, N.A. Wahab, F.S. Ismail, Y.M. Sam, Optimization of artificial neural network topology for membrane bioreactor filtration using response surface methodology, IAES Int. J. Artif. Intell., 9 (2020) 117–125.
  23. S. Aber, A.R. Amani-Ghadim, V. Mirzajani, Removal of Cr(VI) from polluted solutions by electrocoagulation: modeling of experimental results using artificial neural network, J. Hazard. Mater., 171 (2009) 484–490.
  24. A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh, L.C. Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network, J. Hazard. Mater., 192 (2011) 568–575.
  25. S. Curcio, V. Calabrò, G. Iorio, Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks, J. Membr. Sci., 286 (2006) 125–132.
  26. J.N. Mhurchú, G. Foley, Dead-end filtration of yeast suspensions: correlating specific resistance and flux data using artificial neural networks, J. Membr. Sci., 281 (2006) 325–333.
  27. M.-J. Corbatón-Báguena, M.-C. Vincent-Vela, J.-M. Gozálvez-Zafrilla, S. Álvarez-Blanco, J. Lora-García,
    D. Catalán-Martínez, Comparison between artificial neural networks and Hermia’s models to assess ultrafiltration performance, Sep. Purif. Technol., 170 (2016) 434–444.
  28. Q.-F. Liu, S.-H. Kim, S. Lee, Prediction of microfiltration membrane fouling using artificial neural network models, Sep. Purif. Technol., 70 (2009) 96–102.
  29. R. Badrnezhad, B. Mirza, Modeling and optimization of crossflow ultrafiltration using hybrid neural network-genetic algorithm approach, J. Ind. Eng. Chem., 20 (2014) 528–543.
  30. C.M. Chew, M. Aroua, M. Hussain, A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant, J. Ind. Eng. Chem., 45 (2017) 145–155.
  31. S. Martini, S. Afroze, K.A. Roni, Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr(III) from industrial wastewater, Alexandria Eng. J., 59 (2020) 1637–1648.
  32. A.B.M.S. Abeish, Enhanced Photocatalytic Degradation of Biorefractory Pollutants In Petroleum Refinery Wastewater, Ph.D. Thesis, Curtin University, 2015.
  33. F.L. Hua, Y.F. Tsang, Y.J. Wang, S.Y. Chan, H. Chua, S.N. Sin, Performance study of ceramic microfiltration membrane for oily wastewater treatment, Chem. Eng. J., 128 (2007) 169–175.
  34. N.P. Cheremisinoff, Handbook of Water and Wastewater Treatment Technologies, Butterworth-Heinemann, 2001.
  35. M. Bagheri, A. Akbari, S.A. Mirbagheri, Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review, Process Saf. Environ. Prot., 123 (2019) 229–252.
  36. M.G. Alalm, A. Tawfik, S. Ookawara, Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs, J. Water Process Eng., 8 (2015) 55–63.
  37. T. Mohammadi, A. Esmaeelifar, Wastewater treatment using ultrafiltration at a vegetable oil factory, Desalination, 166 (2004) 329–337.
  38. N.U. Barambu, M.R. Bilad, M.A. Bustam, K.A. Kurnia, M.H.D. Othman, N.A.H.M. Nordin, Development of membrane material for oily wastewater treatment: a review, Ain Shams Eng. J., 12 (2021) 1361–1374.
  39. C.S. Ong, W.J. Lau, P.S. Goh, B.C. Ng, A.F. Ismail, Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process, Desalination, 353 (2014) 48–56.
  40. Y. Yang, R. Chen, W. Xing, Integration of ceramic membrane microfiltration with powdered activated carbon for advanced treatment of oil-in-water emulsion, Sep. Purif. Technol., 76 (2011) 373–377.
  41. R.V. Kumar, K.A. Ghosal, G. Pugazhanti, Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion methods and its performance in microfiltration of synthetic oily wastewater treatment, J. Membr. Sci., 490 (2015) 92–102.
  42. A. Salahi, A. Gheshlaghi, T. Mohammadi, S.S. Madaeni, Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater, Desalination, 262 (2010) 235–242.
  43. A.S. Cassini, I.C. Tessaro, L.D.F. Marczak, C. Pertile, Ultrafiltration of wastewater from isolated soy protein production: a comparison of three UF membranes, J. Cleaner Prod., 18 (2010) 260–265.
  44. M. Padaki, R. Surya Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F. Ismail, Membrane technology enhancement in oil–water separation. A review, Desalination, 357 (2015) 197–207.
  45. A. Lobo, Á. Cambiella, J.M. Benito, C. Pazos, J. Coca, Ultrafiltration of oil-in-water emulsions with ceramic membranes: influence of pH and crossflow velocity, J. Membr. Sci., 278 (2006) 328–334.
  46. Interpret the Key Results for Histogram, Minitab.com, 2019.
  47. F.J. Bremner, S.J. Gotts, D.L. Denham, Hinton diagrams: viewing connection strengths in neural networks, Behavior Research Methods, Instruments & Computers, 26 (1994) 215–218.