References

  1. M.L. Davis, Water and Wastewater Engineering: Design Principles and Practice, McGraw-Hill Education, New York, 2020.
  2. A.L. Kowal, M. Świderska-Bróż, Water Treatment, PWN, Warszawa, 2003 (in Polish).
  3. M.M. Sozański, Technology of Removal and Disposal of Residuals From Water Treatment, Wydawnictwo Politechniki Poznańskiej, Poznań, 1999 (in Polish).
  4. S. De Carvalho Gomes, J.L. Zhou, X. Zeng, G. Long, Water treatment sludge conversion to biochar as cementitious material in cement composite, J. Environ. Manage., 306 (2022) 114463, doi:10.1016/j.jenvman.2022.114463.
  5. O. Gencel, S.M.S. Kazmi, M.J. Munir, M. Sutcu, E. Erdogmus, A. Yaras, Feasibility of using clay-free bricks manufactured from water treatment sludge, glass, and marble wastes: an exploratory study, Constr. Build. Mater., 298 (2021) 123843, doi: 10.1016/j.conbuildmat.2021.123843.
  6. E. Erdogmus, M. Harja, O. Gencel, M. Sutcu, A. Yaras, New construction materials synthesized from water treatment sludge and fired clay brick wastes, J. Build. Eng., 42 (2021) 102471, doi:10.1016/j.jobe.2021.102471.
  7. A. Benlalla, M. Elmoussaouiti, M. Dahhou, M. Assafi, Utilization of water treatment plant sludge in structural ceramics bricks, Appl. Clay Sci., 118 (2015) 171–177.
  8. S.D.C. Gomes, J.L. Zhou, W. Li, F. Qu, Recycling of raw water treatment sludge in cementitious composites: effects on heat evolution, compressive strength and microstructure, Resour. Conserv. Recycl., 161 (2020) 104970, doi: 10.1016/j.resconrec.2020.104970.
  9. H. Zeng, Y. Yu, F. Wang, J. Zhang, D. Li, Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan, Colloids Surf., A, 585 (2020) 124036, doi:10.1016/j.colsurfa.2019.124036.
  10. K.C. Makris, D. Sarkar, R. Datta, Aluminum-based drinkingwater treatment residuals: a novel sorbent for perchlorate removal, Environ. Pollut., 140 (2006) 9–12.
  11. C. Liu, Z. Tang, Y. Chen, S. Su, W. Jiang, Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite, Bioresour. Technol., 101 (2010) 1097–1101.
  12. K. Björklund, L.Y. Li, Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge, J. Environ. Manage., 197 (2017) 490–497.
  13. F. Rozada, L.F. Calvo, A.I. García, J. Martín-Villacorta, M. Otero, Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems, Bioresour. Technol., 87 (2003) 221–230.
  14. B. Pieczykolan, I. Płonka, Application of excess activated sludge as waste sorbent for dyes removal from their aqueous solutions, Ecol. Chem. Eng. S, 26 (2019) 773–784.
  15. Z. Berizi, S.Y. Hashemi, M. Hadi, A. Azari, A.H. Mahvi, The study of non-linear kinetics and adsorption isotherm models for Acid Red 18 from aqueous solutions by magnetite nanoparticles and magnetite nanoparticles modified by sodium alginate, Water Sci. Technol., 74 (2016) 1235–1242.
  16. I. Ali, S. Afshinb, Y. Poureshgh, A. Azari, Y. Rashtbari, A. Feizizadeh, A. Hamzezadeh, M. Fazlzadeh, Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water, Environ. Sci. Pollut. Res., 27 (2020) 36732–36743.
  17. Reactive Blue 81, (n.d.).
  18. A. Berrazoum, R. Marouf, F. Ouadjenia, J. Schott, Bioadsorption of a reactive dye from aqueous solution by municipal solid waste, Biotechnol. Rep., 7 (2015) 44–50.
  19. P. Wronski, J. Surmacki, H. Abramczyk, A. Adamus, M. Nowosielska, W. Maniukiewicz, M. Kozanecki,
    M. Szadkowska-Nicze, Surface, optical and photocatalytic properties of silica-supported TiO2 treated with electron beam, Radiat. Phys. Chem., 109 (2015) 40–47.
  20. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, K. Sven. Vetenskapsakademiens. Handl., 24 (1898) 1–39.
  21. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  22. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–59.
  23. A.L. Prasad, T. Santhi, S. Manonmani, Recent developments in preparation of activated carbons by microwave: Study of residual errors, Arabian J. Chem., 8 (2015) 343–354.
  24. A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscope of organic material, Indones. J. Sci. Technol., 4 (2019) 97–118.
  25. A. Rajca, W. Zieliński, E. Al., Spectroscopic Methods and Their Application to the Identification of Organic Compounds, Wydawnictwo Naukowo-Techniczne, Warsaw, 1995 (in Polish).
  26. R.M. Silverstein, G.C. Bassler, T. Morrill, Chapter 3: Infrared Spectrometry, Spectrom. Identif. Org. Compd., 5th ed., John Wiley & Sons, New York, 1991, pp. 91–164.
  27. T. Lou, X. Yan, X. Wang, Chitosan coated polyacrylonitrile nanofibrous mat for dye adsorption, Int. J. Biol. Macromol., 135 (2019) 919–925.
  28. F. Fadzail, M. Hasan, Z. Mokhtar, N. Ibrahim, Removal of naproxen using low-cost Dillenia Indica peels as an activated carbon, Mater. Today:. Proc., 57 (2022) 1108–1115.
  29. R.K. Sharma, R. Kumar, A.P. Singh, Metal ions and organic dyes sorption applications of cellulose grafted with binary vinyl monomers, Sep. Purif. Technol., 209 (2019) 684–697.
  30. B. Singha, S.K. Das, Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies, Colloids Surf., B, 84 (2011) 221–232.
  31. M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda, Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4- activated rubber wood sawdust, J. Colloid Interface Sci., 292 (2005) 354–362.
  32. W. Konicki, M. Aleksandrzak, D. Moszyński, E. Mijowska, Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies, J. Colloid Interface Sci., 496 (2017) 188–200.
  33. B. Cheknane, F. Zermane, M. Baudu, O. Bouras, J.P. Basly, Sorption of basic dyes onto granulated pillared clays: thermodynamic and kinetic studies, J. Colloid Interface Sci., 381 (2012) 158–163.
  34. M. Muttakin, S. Mitra, K. Thu, K. Ito, B. Saha, Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms, Int. J. Heat Mass Transfer, 122 (2018) 795–805.
  35. S. Li, L. Zhong, H. Wang, J. Li, H. Cheng, Q. Ma, Process optimization of polyphenol oxidase immobilization: Isotherm, kinetic, thermodynamic and removal of phenolic compounds, Int. J. Biol. Macromol., 185 (2021) 792–803.
  36. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  37. M.L.F.A. De Castro, M.L.B. Abad, D.A.G. Sumalinog, R.R.M. Abarca, P. Paoprasert, M.D.G. de Luna, Adsorption of methylene blue dye and Cu(II) ions on EDTA-modified bentonite: isotherm, kinetic and thermodynamic studies, Sustainable Environ. Res., 28 (2018) 197–205.
  38. M. Brdar, M. Šćiban, A. Takači, T. Došenović, Comparison of two and three parameters adsorption isotherm for Cr(VI) onto kraft lignin, Chem. Eng. J., 183 (2012) 108–111.
  39. A. Sarkar, B. Paul, Analysis of the performance of zirconiamultiwalled carbon nanotube nanoheterostructures in adsorbing As(V) from potable water from the aspects of physical chemistry with an emphasis on adsorption site energy distribution and density functional theory calculations, Microporous Mesoporous Mater., 302 (2020) 110191, doi: 10.1016/j.micromeso.2020.110191.
  40. S. Ullah, M.A. Bustam, A.G. Al-Sehemi, M.A. Assiri, F.A. Abdul Kareem, A. Mukhtar, M. Ayoub, G. Gonfa, Influence of postsynthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of
    MOF-200 at different temperatures; an experimental and adsorption isotherms study, Microporous Mesoporous Mater., 296 (2020) 110002, doi: 10.1016/j.micromeso.2020.110002.
  41. Z. Lu, C. Huangfu, Y. Wang, H. Ge, Y. Yao, P. Zou, G. Wang, H. He, H. Rao, Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multimorphological features, Mater. Sci. Eng. C, 52 (2015) 251–258.
  42. L. Mihaly-Cozmuta, A. Mihaly-Cozmuta, A. Peter, C. Nicula, H. Tutu, D. Silipas, E. Indrea, Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies, J. Environ. Manage., 137 (2014) 69–80.
  43. S. Kasap, H. Tel, S. Piskin, Preparation of TiO2 nanoparticles by sonochemical method, isotherm, thermodynamic and kinetic studies on the sorption of strontium, J. Radioanal. Nucl. Chem., 289 (2011) 489–495.
  44. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  45. A. Pala, P. Galiatsatou, E. Tokat, H. Erkaya, C. Israilides, D. Arapoglou, The use of activated carbon from olive oil mill residue, for the removal of colour from textile wastewater, European Water, 13 (2006) 29–34.
  46. G.Z. Kyzas, N.K. Lazaridis, Reactive and basic dyes removal by sorption onto chitosan derivatives, J. Colloid Interface Sci., 331 (2009) 32–39.
  47. A.P. de Oliveira, A.N. Módenes, M.E. Bragião, C.L. Hinterholz, D.E.G. Trigueros, I.G. de O. Bezerra, Use of grape pomace as a biosorbent for the removal of the Brown KROM KGT dye, Bioresour. Technol. Rep., 2 (2018) 92–99.
  48. J.P. Silva, S. Sousa, J. Rodrigues, H. Antunes, J.J. Porter, I. Gonçalves, S. Ferreira-Dias, Adsorption of Acid Orange 7 dye in aqueous solutions by spent brewery grains, Sep. Purif. Technol., 40 (2004) 309–315.
  49. K.W. Jung, B.H. Choi, M.J. Hwang, T.U. Jeong, K.H. Ahn, Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of Acid Orange 7 and methylene blue, Bioresour. Technol., 219 (2016) 185–195.
  50. S.T. Akar, R. Uysal, Untreated clay with high adsorption capacity for effective removal of CI Acid Red 88 from aqueous solutions: batch and dynamic flow mode studies, Chem. Eng. J., 162 (2010) 591–598.
  51. V.O. Njoku, K.Y. Foo, M. Asif, B.H. Hameed, Preparation of activated carbons from Rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for Acid Yellow 17 dye adsorption, Chem. Eng. J., 250 (2014) 198–204.
  52. B. Heibati, S. Rodriguez-Couto, M.A. Al-Ghouti, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods, J. Mol. Liq., 208 (2015) 99–105.