References
- M.L. Davis, Water and Wastewater Engineering: Design
Principles and Practice, McGraw-Hill Education, New York, 2020.
- A.L. Kowal, M. Świderska-Bróż, Water Treatment, PWN,
Warszawa, 2003 (in Polish).
- M.M. Sozański, Technology of Removal and Disposal of
Residuals From Water Treatment, Wydawnictwo Politechniki
Poznańskiej, Poznań, 1999 (in Polish).
- S. De Carvalho Gomes, J.L. Zhou, X. Zeng, G. Long, Water
treatment sludge conversion to biochar as cementitious material
in cement composite, J. Environ. Manage., 306 (2022) 114463,
doi:10.1016/j.jenvman.2022.114463.
- O. Gencel, S.M.S. Kazmi, M.J. Munir, M. Sutcu, E. Erdogmus,
A. Yaras, Feasibility of using clay-free bricks manufactured
from water treatment sludge, glass, and marble wastes: an
exploratory study, Constr. Build. Mater., 298 (2021) 123843,
doi: 10.1016/j.conbuildmat.2021.123843.
- E. Erdogmus, M. Harja, O. Gencel, M. Sutcu, A. Yaras, New
construction materials synthesized from water treatment
sludge and fired clay brick wastes, J. Build. Eng., 42 (2021)
102471, doi:10.1016/j.jobe.2021.102471.
- A. Benlalla, M. Elmoussaouiti, M. Dahhou, M. Assafi, Utilization
of water treatment plant sludge in structural ceramics bricks,
Appl. Clay Sci., 118 (2015) 171–177.
- S.D.C. Gomes, J.L. Zhou, W. Li, F. Qu, Recycling of raw
water treatment sludge in cementitious composites: effects
on heat evolution, compressive strength and microstructure,
Resour. Conserv. Recycl., 161 (2020) 104970, doi: 10.1016/j.resconrec.2020.104970.
- H. Zeng, Y. Yu, F. Wang, J. Zhang, D. Li, Arsenic(V) removal
by granular adsorbents made from water treatment residuals
materials and chitosan, Colloids Surf., A, 585 (2020) 124036,
doi:10.1016/j.colsurfa.2019.124036.
- K.C. Makris, D. Sarkar, R. Datta, Aluminum-based drinkingwater
treatment residuals: a novel sorbent for perchlorate
removal, Environ. Pollut., 140 (2006) 9–12.
- C. Liu, Z. Tang, Y. Chen, S. Su, W. Jiang, Characterization
of mesoporous activated carbons prepared by pyrolysis of
sewage sludge with pyrolusite, Bioresour. Technol., 101 (2010)
1097–1101.
- K. Björklund, L.Y. Li, Adsorption of organic stormwater
pollutants onto activated carbon from sewage sludge,
J. Environ. Manage., 197 (2017) 490–497.
- F. Rozada, L.F. Calvo, A.I. García, J. Martín-Villacorta, M. Otero,
Dye adsorption by sewage sludge-based activated carbons in
batch and fixed-bed systems, Bioresour. Technol., 87 (2003)
221–230.
- B. Pieczykolan, I. Płonka, Application of excess activated sludge
as waste sorbent for dyes removal from their aqueous solutions,
Ecol. Chem. Eng. S, 26 (2019) 773–784.
- Z. Berizi, S.Y. Hashemi, M. Hadi, A. Azari, A.H. Mahvi, The
study of non-linear kinetics and adsorption isotherm models for
Acid Red 18 from aqueous solutions by magnetite nanoparticles
and magnetite nanoparticles modified by sodium alginate,
Water Sci. Technol., 74 (2016) 1235–1242.
- I. Ali, S. Afshinb, Y. Poureshgh, A. Azari, Y. Rashtbari,
A. Feizizadeh, A. Hamzezadeh, M. Fazlzadeh, Green
preparation of activated carbon from pomegranate peel coated
with zero-valent iron nanoparticles (nZVI) and isotherm and
kinetic studies of amoxicillin removal in water, Environ. Sci.
Pollut. Res., 27 (2020) 36732–36743.
- Reactive Blue 81, (n.d.).
- A. Berrazoum, R. Marouf, F. Ouadjenia, J. Schott, Bioadsorption
of a reactive dye from aqueous solution by municipal solid
waste, Biotechnol. Rep., 7 (2015) 44–50.
- P. Wronski, J. Surmacki, H. Abramczyk, A. Adamus,
M. Nowosielska, W. Maniukiewicz, M. Kozanecki,
M. Szadkowska-Nicze, Surface, optical and photocatalytic
properties of silica-supported TiO2 treated with electron beam,
Radiat. Phys. Chem., 109 (2015) 40–47.
- S. Lagergren, Zur theorie der sogenannten adsorption geloster
stoffe, K. Sven. Vetenskapsakademiens. Handl., 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanit. Eng. Div., 89 (1963) 31–59.
- A.L. Prasad, T. Santhi, S. Manonmani, Recent developments
in preparation of activated carbons by microwave: Study of
residual errors, Arabian J. Chem., 8 (2015) 343–354.
- A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and
interpret FTIR spectroscope of organic material, Indones. J. Sci.
Technol., 4 (2019) 97–118.
- A. Rajca, W. Zieliński, E. Al., Spectroscopic Methods and Their
Application to the Identification of Organic Compounds,
Wydawnictwo Naukowo-Techniczne, Warsaw, 1995 (in Polish).
- R.M. Silverstein, G.C. Bassler, T. Morrill, Chapter 3: Infrared
Spectrometry, Spectrom. Identif. Org. Compd., 5th ed., John
Wiley & Sons, New York, 1991, pp. 91–164.
- T. Lou, X. Yan, X. Wang, Chitosan coated polyacrylonitrile
nanofibrous mat for dye adsorption, Int. J. Biol. Macromol.,
135 (2019) 919–925.
- F. Fadzail, M. Hasan, Z. Mokhtar, N. Ibrahim, Removal of
naproxen using low-cost Dillenia Indica peels as an activated
carbon, Mater. Today:. Proc., 57 (2022) 1108–1115.
- R.K. Sharma, R. Kumar, A.P. Singh, Metal ions and organic dyes
sorption applications of cellulose grafted with binary vinyl
monomers, Sep. Purif. Technol., 209 (2019) 684–697.
- B. Singha, S.K. Das, Biosorption of Cr(VI) ions from aqueous
solutions: kinetics, equilibrium, thermodynamics and
desorption studies, Colloids Surf., B, 84 (2011) 221–232.
- M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda,
Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-
activated rubber wood sawdust, J. Colloid Interface Sci.,
292 (2005) 354–362.
- W. Konicki, M. Aleksandrzak, D. Moszyński, E. Mijowska,
Adsorption of anionic azo-dyes from aqueous solutions onto
graphene oxide: equilibrium, kinetic and thermodynamic
studies, J. Colloid Interface Sci., 496 (2017) 188–200.
- B. Cheknane, F. Zermane, M. Baudu, O. Bouras, J.P. Basly, Sorption
of basic dyes onto granulated pillared clays: thermodynamic
and kinetic studies, J. Colloid Interface Sci., 381 (2012) 158–163.
- M. Muttakin, S. Mitra, K. Thu, K. Ito, B. Saha, Theoretical
framework to evaluate minimum desorption temperature
for IUPAC classified adsorption isotherms, Int. J. Heat Mass
Transfer, 122 (2018) 795–805.
- S. Li, L. Zhong, H. Wang, J. Li, H. Cheng, Q. Ma, Process
optimization of polyphenol oxidase immobilization: Isotherm,
kinetic, thermodynamic and removal of phenolic compounds,
Int. J. Biol. Macromol., 185 (2021) 792–803.
- K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption
isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
- M.L.F.A. De Castro, M.L.B. Abad, D.A.G. Sumalinog,
R.R.M. Abarca, P. Paoprasert, M.D.G. de Luna, Adsorption
of methylene blue dye and Cu(II) ions on EDTA-modified
bentonite: isotherm, kinetic and thermodynamic studies,
Sustainable Environ. Res., 28 (2018) 197–205.
- M. Brdar, M. Šćiban, A. Takači, T. Došenović, Comparison of
two and three parameters adsorption isotherm for Cr(VI)
onto kraft lignin, Chem. Eng. J., 183 (2012) 108–111.
- A. Sarkar, B. Paul, Analysis of the performance of zirconiamultiwalled
carbon nanotube nanoheterostructures in
adsorbing As(V) from potable water from the aspects of
physical chemistry with an emphasis on adsorption site
energy distribution and density functional theory calculations,
Microporous Mesoporous Mater., 302 (2020) 110191, doi: 10.1016/j.micromeso.2020.110191.
- S. Ullah, M.A. Bustam, A.G. Al-Sehemi, M.A. Assiri, F.A. Abdul
Kareem, A. Mukhtar, M. Ayoub, G. Gonfa, Influence of postsynthetic
graphene oxide (GO) functionalization on the
selective CO2/CH4 adsorption behavior of
MOF-200 at different
temperatures; an experimental and adsorption isotherms
study, Microporous Mesoporous Mater., 296 (2020) 110002,
doi: 10.1016/j.micromeso.2020.110002.
- Z. Lu, C. Huangfu, Y. Wang, H. Ge, Y. Yao, P. Zou, G. Wang,
H. He, H. Rao, Kinetics and thermodynamics studies on the BMP-2
adsorption onto hydroxyapatite surface with different multimorphological
features, Mater. Sci. Eng. C, 52 (2015) 251–258.
- L. Mihaly-Cozmuta, A. Mihaly-Cozmuta, A. Peter, C. Nicula,
H. Tutu, D. Silipas, E. Indrea, Adsorption of heavy metal
cations by Na-clinoptilolite: equilibrium and selectivity studies,
J. Environ. Manage., 137 (2014) 69–80.
- S. Kasap, H. Tel, S. Piskin, Preparation of TiO2 nanoparticles by
sonochemical method, isotherm, thermodynamic and kinetic
studies on the sorption of strontium, J. Radioanal. Nucl. Chem.,
289 (2011) 489–495.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interface Sci., 209 (2014) 172–184.
- A. Pala, P. Galiatsatou, E. Tokat, H. Erkaya, C. Israilides,
D. Arapoglou, The use of activated carbon from olive oil mill
residue, for the removal of colour from textile wastewater,
European Water, 13 (2006) 29–34.
- G.Z. Kyzas, N.K. Lazaridis, Reactive and basic dyes removal
by sorption onto chitosan derivatives, J. Colloid Interface Sci.,
331 (2009) 32–39.
- A.P. de Oliveira, A.N. Módenes, M.E. Bragião, C.L. Hinterholz,
D.E.G. Trigueros, I.G. de O. Bezerra, Use of grape pomace as
a biosorbent for the removal of the Brown KROM KGT dye,
Bioresour. Technol. Rep., 2 (2018) 92–99.
- J.P. Silva, S. Sousa, J. Rodrigues, H. Antunes, J.J. Porter,
I. Gonçalves, S. Ferreira-Dias, Adsorption of Acid Orange 7
dye in aqueous solutions by spent brewery grains, Sep. Purif.
Technol., 40 (2004) 309–315.
- K.W. Jung, B.H. Choi, M.J. Hwang, T.U. Jeong, K.H. Ahn,
Fabrication of granular activated carbons derived from spent
coffee grounds by entrapment in calcium alginate beads for
adsorption of Acid Orange 7 and methylene blue, Bioresour.
Technol., 219 (2016) 185–195.
- S.T. Akar, R. Uysal, Untreated clay with high adsorption
capacity for effective removal of CI Acid Red 88 from aqueous
solutions: batch and dynamic flow mode studies, Chem. Eng. J.,
162 (2010) 591–598.
- V.O. Njoku, K.Y. Foo, M. Asif, B.H. Hameed, Preparation of
activated carbons from Rambutan (Nephelium lappaceum) peel
by microwave-induced KOH activation for Acid Yellow 17 dye
adsorption, Chem. Eng. J., 250 (2014) 198–204.
- B. Heibati, S. Rodriguez-Couto, M.A. Al-Ghouti, M. Asif,
I. Tyagi, S. Agarwal, V.K. Gupta, Kinetics and thermodynamics
of enhanced adsorption of the dye AR 18 using activated
carbons prepared from walnut and poplar woods, J. Mol. Liq.,
208 (2015) 99–105.