References
- G. Przydatek, W. Kanownik, Impact of small municipal solid
waste landfill on groundwater quality, Environ. Monit. Assess.,
191 (2019), doi: 10.1007/s10661-019-7279-5.
- P. Negi, S. Mor, K. Ravindra, Impact of landfill leachate on
the groundwater quality in three cities of North India and
health risk assessment, Environ. Dev. Sustainability, 22 (2020)
1455–1474.
- J.R. Masoner, D.W. Kolpin, E.T. Furlong, I.M. Cozzarelli,
J.L. Gray, Landfill leachate as a mirror of today’s disposable
society: pharmaceuticals and other contaminants of emerging
concern in final leachate from landfills in the conterminous
United States, Environ. Toxicol. Chem., 35 (2015) 906–918.
- J.R. Masoner, D.W. Kolpin, E.T. Furlong, I.M. Cozzarelli,
J.L. Gray, E.A. Schwab, Contaminants of emerging concern in
fresh leachate from landfills in the conterminous United States,
Environ. Sci. Processes Impacts, 16 (2014) 2335–2354.
- S. Mishra, D. Tiwary, A. Ohri, A.K. Agnihotri, Impact of
municipal solid waste landfill leachate on groundwater quality
in Varanasi, India, Groundwater Sustainable Dev., 9 (2019)
100230, doi: 10.1016/j.gsd.2019.100230.
- A.H. Baghanam, V. Nourani, H. Aslani, H. Taghipour,
Spatiotemporal variation of water pollution near landfill site:
application of clustering methods to assess the admissibility
of LWPI, J. Hydrol., 591 (2020) 125581, doi:10.1016/j.
jhydrol.2020.125581.
- F. Parvin, S.M. Tareq, Impact of landfill leachate contamination
on surface and groundwater of Bangladesh: a systematic review
and possible public health risks assessment, Appl. Water Sci.,
11 (2021) 1–17, doi: 10.1007/s13201-021-01431-3.
- M.D. Vaverková, E.K. Paleologos, A. Dominijanni, E. Koda,
C.-S. Tang, M. Wdowska, Q. Li, N. Guarena,
A.-M.O. Mohamed,
C.S. Vieira, M. Manassero, B.C. O’Kelly, X. Qifeng, M.W. Bo,
D. Adamcová, A. Podlasek, M. Uday, M. Anand, A. Mohammad,
V.S.N.S. Goli, G. Kuntikana, E.M. Palmeira, S. Pathak,
D.N. Singh, Municipal solid waste management under COVID-
19: challenges and recommendations, Environ. Geotech.,
8 (2021) 217–232.
- D. Abiriga, L.S. Vestgarden, H. Klempe, Groundwater
contamination from a municipal landfill: effect of age, landfill
closure, and season on groundwater chemistry, Sci. Total
Environ., 737 (2020) 140307, doi: 10.1016/j.scitotenv.2020.140307.
- L.M.S. Pandey, S.K. Shukla, An insight into waste management
in Australia with a focus on landfill technology and liner leak
detection, J. Cleaner Prod., 225 (2019) 1147–1154.
- K. Papapetridis, E.K. Paleologos, Contaminant detection
probability in heterogeneous aquifers and corrected risk
analysis for remedial response delay, Water Resour. Manage.,
47 (2011) 15, doi: 10.1029/2011WR010652.
- K. Papapetridis, E.K. Paleologos, Stochastic Modeling of Plume
Evolution and Monitoring into Heterogeneous Aquifers,
N. Lambrakis, G. Stournaras, K. Katsanou, Eds., Advances in
the Research of Aquatic Environment. Environmental Earth
Sciences, Springer, Berlin, Heidelberg, 2011, pp. 349–356.
- K. Papapetridis, E.K. Paleologos, Sampling frequency of
groundwater monitoring and remediation delay at contaminated
sites, Water Resour. Manage., 26 (2012) 2673–2688.
- D. Zeng, G. Chen, P. Zhou, H. Xu, A. Qiong, B. Duo,
X. Lu, Z. Wang, Z. Han, Factors influencing groundwater
contamination near municipal solid waste landfill sites in the
Qinghai-Tibetan plateau, Ecotoxicol. Environ. Saf., 211 (2021)
111913, doi: 10.1016/j.ecoenv.2021.111913.
- M. Lech, J. Fronczyk, M. Radziemska, A. Sieczka, K. Garbulewski,
E. Koda, Z. Lechowicz, Monitoring of total dissolved solids on
agricultural lands using electrical conductivity measurements,
Appl. Ecol. Environ. Res., 14 (2016) 285–295.
- E. Koda, A. Tkaczyk, M. Lech, P. Osiński, Application of
electrical resistivity data sets for the evaluation of the pollution
concentrations level within landfill subsoils, Appl. Sci., 7 (2017)
262, doi: 10.3390/app7030262.
- E. Koda, Influence of vertical barrier surrounding old sanitary
landfill on eliminating transport of pollutants on the basis of
numerical modeling and monitoring results, Pol. J. Environ.
Stud., 21 (2012) 929–935.
- S. Thangaperumal, A study of groundwater quality and
mapping using GIS techniques in Kodungaiyur, Chennai, Int. J.
Adv. Res. Ideas Innovations Technol., 5 (2019) 618–624.
- K. Kalawapudi, O. Dube, R. Sharma, Use of neural networks
and spatial interpolation to predict groundwater quality,
Environ. Dev. Sustain., 22 (2020) 2801–2816.
- M.A. Nanda, A.K. Wijayanto, H. Imantho, L.O. Nelwan,
I.W. Budiastra, K.B. Seminar, Factors determining suitable
landfill sites for energy generation from municipal solid waste:
a case study of Jabodetabek Area, Indonesia, Sci. World J., 2022
(2022) 9184786, doi: 10.1155/2022/9184786.
- M. Derakhshandeh, T. Taleb Beydokhti, Management of landfill
locating of urban waste, Eur. Online J. Nat. Soc., 3 (2014) 32–39.
- C. Simsek, A. Elci, O. Gunduz, N. Taskin, An improved landfill
site screening procedure under NIMBY syndrome constraints,
Landscape Urban Plann., 132 (2014) 1–15, doi: 10.1016/j.
landurbplan.2014.08.007.
- S. Dolui, S. Sarkar, Identifying potential landfill sites using
multicriteria evaluation modeling and GIS techniques for
Kharagpur city of West Bengal, India, Environ. Challenges,
5 (2021) 100243, doi: 10.1016/j.envc.2021.100243.
- E. Jahan, A. Nessa, M.F. Hossain, Z. Parveen, Characteristics
of municipal landfill leachate and its impact on surrounding
agricultural land, Bangladesh J. Sci. Res., 29 (2016) 31–39.
- S.A. Urme, M.A. Radia, R. Alam, M.U. Chowdhury, S. Hasan,
S. Ahmed, H.H. Sara, M.S. Islam, D.T. Jerin, P.S. Hema,
M. Rahman, A.K.H.M. Islam, M.T. Hasan, Z. Quayyum, Dhaka
landfill waste practices: addressing urban pollution and health
hazards, Build. Cities, 2 (2021) 700–716.
- N.S.I. Sharifah, A.M. Latifah, The challenge of future landfill:
a case study of Malaysia, J. Toxicol. Environ., 5 (2013) 86–96.
- M.D. Vaverková, E.K. Paleologos, D. Adamcová, A. Podlasek,
G. Pasternak, J. Červenková, Z. Skutnik, E. Koda, J. Winkler,
Municipal solid waste landfill: evidence of the effect of
applied landfill management on vegetation composition,
Waste Manage. Res., 0734242X221079304 (2022) 1–10,
doi: 10.1177/0734242X221079304.
- M.D. Vaverková, D. Adamcová, J. Winkler, E. Koda,
P. Petrželová, A. Maxianová, Alternative method of composting
on a reclaimed municipal waste landfill in accordance with
the circular economy: benefits and risks, Sci. Total Environ.,
723 (2020) 137971, doi: 10.1016/j.scitotenv.2020.137971.
- A. Podlasek, A. Jakimiuk, M.D. Vaverková, E. Koda, Monitoring
and assessment of groundwater quality at landfill sites: selected
case studies of Poland and the Czech Republic, Sustainability,
13 (2021) 7769, doi: 10.3390/su13147769.
- B. Balatka, T. Czudek, J. Demek, Regional division of the relief
of Czechoslovakia, Proceedings of the CSSA, 78 (1973) 81–96
(in Czech).
- Collection of Laws, Decree 83/2014 Coll. Amending Decree
252/2004 Coll., Which Sets Out the Sanitary Requirements
for Drinking and Hot Water and the Frequency and Scope of
Drinking Water Control, as Amended, 2014, Praha, 33 p.
- ČSN 75 7143, Water Quality for Irrigation, Publishing of
Standards, Prague, 1992 (in Czech).
- Ireland’s EPA, Parameters of Groundwater Quality,
Interpretation and Standards, Environmental Protection
Agency, Ireland, 2001.
- US EPA, Edition of the Drinking Water Standards and Health
Advisories Tables, U.S. Environmental Protection Agency,
Washington, 2018.
- World Health Organization (WHO), Guidelines for Drinking-
Water Quality (World Health Organization), 4th ed., Geneva,
Switzerland, 2011, 542 p.
- ČSN ISO 10523, Water Quality, Determination of pH (in Czech).
- ČSN EN 27 888, Water Quality, Determination of Electrical
Conductivity (in Czech).
- ČSN ISO 7150-1, Water Quality, Determination of Ammonium
Ions. Part 1: Manual Spectrometric Method (in Czech).
- ČSN ISO 7890-3, Water Quality, Determination of Nitrate – Part
3: Spectrometric Method Using Sulfosalicylic Acid (in Czech).
- ČSN EN 26 777, Water Quality, Determination of Nitrite,
Molecular Absorption Spectrometric Method (in Czech).
- ČSN ISO 11083, Water Quality, Determination of Chromium(VI),
Spectrophotometric method
with 1,5-diphenylcarbazide
(in Czech).
- J. Hair, R. Anderson, R. Tatham, W. Black, Multivariate Data
Analysis, 5th ed., Prentice Hall, Upper Saddle River, NJ, 1998.
- S. Sharma, Applied Multivariate Techniques, Wiley, New York,
1996.
- M. Vega, R. Pardo, E. Barrado, L. Deban, Assessment of seasonal
and polluting effects on the quality of river water by exploratory
data analysis, Water Res., 32 (1998) 3581–3592.
- I. Jolliffe, Principal Component Analysis, 2nd ed., Springer,
New York, 2002.
- E.K. Paleologos, M.T. Al Nahyan, S. Farouk, K. Papapetridis,
Ensemble Contaminant Transport Modelling and Bayesian
Decision-Making of Groundwater Monitoring, Proceedings of
the Fifteenth International Conference on Civil, Structural and
Environmental Engineering Computing, Civil-Comp Press,
Stirlingshire, 2015, 10 pp.
- M.M.A. El-Salam, G.I. Abu-Zuid, Impact of landfill leachate on
the groundwater quality: a case study in Egypt, J. Adv. Res.,
6 (2015) 579–586.
- K. Karthik, R. Mayildurai, R. Mahalakshmi, S. Karthikeyan,
Physicochemical analysis of groundwater quality of Velliangadu
Area in Coimbatore District, Tamil Nadu, India, Rasayan J.
Chem., 12 (2019) 409–414.
- O.O. Ololade, S. Mavimbela, S.A. Oke, R. Makhadi, Impact of
leachate from northern landfill site in bloemfontein on water
and soil quality: implications for water and food security,
Sustainability, 11 (2019) 4238, doi: 10.3390/su11154238.
- D. Dąbrowska, A. Witkowski, M. Sołtysiak, Representativeness
of the groundwater monitoring results in the context of its
methodology: case study of a municipal landfill complex
in Poland, Environ. Earth Sci., 77 (2018) 266, doi: 10.1007/s12665-018-7455-x.
- J.K. Böhlke, R.L. Smith, D.N. Miller, Ammonium transport and
reaction in contaminated groundwater: application of isotope
tracers and isotope fractionation studies, Water Resour. Res.,
42 (2006), doi: 10.1029/2005WR004349.
- E. Koda, A. Sieczka, P. Osiński, Ammonium concentration and
migration in groundwater in the vicinity of waste management
site located in the neighborhood of protected areas of Warsaw,
Poland, Sustainability, 8 (2016) 1253, doi: 10.3390/su8121253.
- N.M. Dubrovsky, K.R. Burow, G.M. Clark, J.M. Gronberg,
P.A. Hamilton, K.J. Hitt, D.K. Mueller, M.D. Munn,
B.T. Nolan,
L.J. Puckett, M.G. Ruper, T.M. Short, N.E. Spahr, L.A. Sprague,
W.G. Wilber, The Quality of Our Nation’s Waters—Nutrients in
the Nation’s Streams and Groundwater, 1992–2004: (No. 1350),
U.S. Geological Survey Circular, 2010.
- R. Cossu, L.E. Zuffianò, P.P. Limoni, G. De Giorgio, P. Pizzardin,
T. Miano, D. Mondelli, R. Garavaglia, C. Carella, M. Polemio,
M., How can the role of leachate on nitrate concentration and
groundwater quality be clarified? An approach for landfills in
operation (Southern Italy), Waste Manage., 77 (2018) 156–165.
- J. Wu, W.D. Zhao, J. Lu, S. Jin, J.Q. Wang, J.Z. Qian, Geographic
information system based approach for the investigation of
groundwater nitrogen pollution near a closed old landfill site in
Beijing, China, Environ. Eng. Manage. J., 17 (2018) 1095–1101.
- Z. Han, S. Wang, J. Zhao, X. Hu, Y. Fei, M. Xu, Identification of
nitrogen-sources in an aquifer beneath a municipal solid waste
landfill in the vicinity of multiple pollutant sources, J. Environ.
Manage., 268 (2020) 110661, doi: 10.1016/j.jenvman.2020.110661.
- E. Koda, A. Miszkowska, A. Sieczka, P. Osiński, Heavy metals
contamination within restored landfill site in Poland, Environ.
Geotech., 7 (2020) 512–521.
- T. Alemayehu, G. Mebrahtu, A. Hadera, D.N. Bekele,
Assessment of the impact of landfill leachate on groundwater
and surrounding surface water: a case study of Mekelle city,
Northern Ethiopia, Sustain. Water Resour. Manage., 5 (2019)
1641–1649.
- Pinfohouse (Pollution Prevention Services, Iowa Department
of Natural Resources) Anatomy of a Tire. Available at: https://p2infohouse.org/ref/11/10504/html/intro/tire.htm (Accessed
March 30, 2021).
- J.A. Izbicky, J.W. Ball, T.D. Bullen, S.J. Sutley, Chromium,
chromium isotopes and selected trace elements, western Mojave
Desert, California, Appl. Geochem., 23 (2008) 1325–1352.
- A.F. Adamczyk, A. Haładus, Zanieczyszczenie chromem wód
podziemnych i powierzchniowych w rejonie składowisk
Z.Ch. Alwernia, Mat. Konf. Geochemiczne. Hydrochemiczne
i biochemiczne zmiany środowiska przyrodniczego na
obszarach objętych antropopresją. Analiza stanu, prognoza,
zapobieganie, Wyd. AGH Kraków, 1991 (in Polish).
- C.O. Akinbile, Environmental impact of landfill on groundwater
quality and agricultural soils in Nigeria, Soil Water Res., 7 (2012)
18–26.
- J.W. Ball, J.A. Izbicky, Occurrence of hexavalent chromium in
ground water in the western Mojave Desert, California, Appl.
Geochem., 19 (2004) 1123–1135.
- California Water Boards 2018, Maximum Contaminant
Levels and Regulatory Dates for Drinking Water, U.S. EPA
vs California, Last Updated October 2018. Available at:
https://www.waterboards.ca.gov/drinking_water/certlic/
drinkingwater/documents/ccr/mcls_epa_vs_dwp.pdf (accessed
March 10, 2021).
- World Health Organization (WHO), Chromium in Drinking-
Water, Draft Background Document for Development of WHO
Guidelines for Drinking-Water, 2019. Available at https://www.
who.int/water_sanitation_health/water-quality/guidelines/
chemicals/draft-chromium-190924.pdf (Accessed March 10,
2021).
- B. Hölting, Hydrogeologie, 4 Aufl., F. Enke Edit. Stuttgart, 1992.
- E.K. Paleologos, Stochastic Flow and Particle Tracking Modeling
for Contaminant Detection in Shallow, Heterogeneous Aquifers,
Univers. J. Math. Math. Sci.,
5 (2014) 149.
- C.W. Liu, K.H. Lin, Y.M. Kuo, Application of factor analysis in
the assessment of groundwater quality in a blackfoot disease
area in Taiwan, Sci. Total Environ., 313 (2003) 77–89.