References
- I.B. Gomes, J.-Y. Maillard, L.C. Simões, M. Simões, Emerging
contaminants affect the microbiome of water systems —
strategies for their mitigation, npj Clean Water, 3 (2020) 39,
doi: 10.1038/s41545-020-00086-y.
- T. Merle, D.R.U. Knappe, W. Pronk, B. Vogler, J. Hollender,
U. von Gunten, Assessment of the breakthrough of micropollutants
in full-scale granular activated carbon adsorbers by
rapid small-scale column tests and a novel pilot-scale sampling
approach, Environ. Sci. Water Res. Technol., 6 (2020) 2742–2751.
- A. Alsbaiee, B.J. Smith, L.L. Xiao, Y.H. Ling, D.E. Helbling,
W.R. Dichtel, Rapid removal of organic micropollutants from
water by a porous β-cyclodextrin polymer, Nature, 529 (2016)
190–194.
- A.K. Sarmah, Advances in Chemical Pollution, Environmental
Management and Protection, Vol. 7, Elsevier, Cambridge, 2021.
- S.D. Richardson, S.Y. Kimura, Water analysis: emerging
contaminants and current issues, Anal. Chem., 88 (2016)
546–582.
- F.T. Lange, M. Scheurer, H.-J. Brauch, Artificial sweeteners—a
recently recognized class of emerging environmental
contaminants: a review, Anal. Bioanal. Chem., 403 (2012)
2503–2518.
- C.J. Houtman, Emerging contaminants in surface waters and
their relevance for the production of drinking water in Europe,
J. Integr. Environ. Sci., 7 (2010) 271–295.
- C. Stamm, K. Räsänen, F.J. Burdon, F. Altermatt, J. Jokela,
A. Joss, M. Ackermann, R.I.L. Eggen, Unravelling the impacts of
micropollutants in aquatic ecosystems: interdisciplinary studies
at the interface of large-scale ecology, Adv. Ecol. Res., 55 (2016)
183–223.
- H. Zia, N.R. Harris, G.V. Merrett, M. Rivers, N. Coles, The
impact of agricultural activities on water quality:
a case for
collaborative catchment-scale management using integrated
wireless sensor networks, Comput. Electron. Agric., 96 (2013)
126–138.
- M. Liess, L. Liebmann, P. Vormeier, O. Weisner, R. Altenburger,
D. Borchardt, W. Brack, A. Chatzinotas,
B. Escher, K. Foit,
R. Gunold, S. Henz, K.L. Hitzfeld, M. Schmitt-Jansen,
N. Kamjunke, O. Kaske, S. Knillmann,
M. Krauss, E. Küster,
M. Link, M. Lück, M. Möder, A. Müller, A. Paschke, R.B. Schäfer,
A. Schneeweiss,
V.C. Schreiner, T. Schulze, G. Schüürmann,
W. von Tümpling, M. Weitere, J. Wogram, T. Reemtsma,
Pesticides are the dominant stressors for vulnerable insects in
lowland streams, Water Res., 201 (2021) 117262, doi:10.1016/j.watres.2021.117262.
- F. Hüesker, R. Lepenies, Why does pesticide pollution in water
persist?, Environ. Sci. Policy, 128 (2022) 185–193.
- M.A. Beketov, B.J. Kefford, R.B. Schäfer, M. Liess, Pesticides
reduce regional biodiversity of stream invertebrates, Proc.
Natl. Acad. Sci. U.S.A., 110 (2013) 11039–11043.
- L. Guzzella, F. Pozzoni, G. Giuliano, Herbicide contamination
of surficial groundwater in Northern Italy, Environ. Pollut.,
142 (2006) 344–353.
- N. Baran, N. Surdyk, C. Auterives, Pesticides in groundwater
at a national scale (France): impact of regulations, molecular
properties, uses, hydrogeology and climatic conditions,
Sci. Total Environ., 791 (2021) 148137, doi:10.1016/j.scitotenv.2021.148137.
- Directive (EU) 2020/2184 of the European Parliament and
of the Council of 16 December 2020 on the Quality of Water
Intended for Human Consumption (Recast) (Text with EEA
Relevance), Official Journal of the European Union, European
Union.
- M.-K. Kim, K.-D. Zoh, Occurrence and removals of
micropollutants in water environment, Environ. Eng. Res.,
21 (2016) 319–332.
- F.A. Caliman, M. Gavrilescu, Pharmaceuticals, personal care
products and endocrine disrupting agents in the environment –
a review, CLEAN–Soil Air Water, 37 (2009) 277–303.
- S.C. Monteiro, A.B.A. Boxall, Occurrence and fate of human
pharmaceuticals in the environment, Rev. Environ. Contam.
Toxicol., 202 (2010) 53–154.
- J.L. Zhou, Z.L. Zhang, E. Banks, D. Grover, J.Q. Jiang,
Pharmaceutical residues in wastewater treatment works
effluents and their impact on receiving river water, J. Hazard.
Mater., 166 (2009) 655–661.
- J. Jiang, J. Han, X. Zhang, Nonhalogenated aromatic DBPs
in drinking water chlorination: a gap between NOM and
halogenated aromatic DBPs, Environ. Sci. Technol., 54 (2020)
1646–1656.
- J. Han, X. Zhang, Evaluating the comparative toxicity of
DBP mixtures from different disinfection scenarios:
a new
approach by combining freeze-drying or rotoevaporation with
a marine polychaete bioassay, Environ. Sci. Technol., 52 (2018)
10552–10561.
- J. Meijer, M. Lamoree, T. Hamers, J.-P. Antignac, S. Hutinet,
L. Debrauwer, A. Covaci, C. Huber, M. Krauss,
D.I. Walker,
E.L. Schymanski, R. Vermeulen, J. Vlaanderen, An annotation
database for chemicals of emerging concern in exposome
research, Environ. Int., 152 (2021) 106511, doi: 10.1016/j.envint.2021.106511.
- R.N. Carvalho, A. Arukwe, S. Ait-Aissa, A. Bado-Nilles,
S. Balzamo, A. Baun, S. Belkin, L. Blaha, F. Brion, D. Conti,
N. Creusot, Y. Essig, V.E.V. Ferrero, V. Flander-Putrle,
M. Fürhacker, R. Grillari-Voglauer, C. Hogstrand,
A. Jonáš,
J.B. Kharlyngdoh, R. Loos, A.-K. Lundebye, C. Modig,
P.-E. Olsson, S. Pillai, N. Polak, M. Potalivo,
W. Sanchez,
A. Schifferli, K. Schirmer, S. Sforzini, S.R. Stürzenbaum,
L. Søfteland, V. Turk, A. Viarengo,
I. Werner, S. Yagur-Kroll,
R. Zounková, T. Lettieri, Mixtures of chemical pollutants at
European legislation safety concentrations: how safe are they?,
Toxicol. Sci., 141 (2014) 218–233.
- M. Heynen, J. Fick, M. Jonsson, J. Klaminder, T. Brodin, Effect
of bioconcentration and trophic transfer on realized exposure to
oxazepam in 2 predators, the dragonfly larvae (Aeshna grandis)
and the Eurasian perch (Perca fluviatilis), Environ. Toxicol.
Chem., 35 (2016) 930–937.
- F.J. Burdon, M. Reyes, A.C. Alder, A. Joss, C. Ort, K. Räsänen,
J. Jokela, R.I.L. Eggen, C. Stamm, Environmental context and
disturbance influence differing trait-mediated community
responses to wastewater pollution in streams, Ecol. Evol.,
6 (2016) 3923–3939.
- N.T. Halstead, T.A. McMahon, S.A. Johnson, T.R. Raffel,
J.M. Romansic, P.W. Crumrine, J.R. Rohr, Community ecology
theory predicts the effects of agrochemical mixtures on aquatic
biodiversity and ecosystem properties, Ecol. Lett., 17 (2014)
932–941.
- T. Bond, W. Chu, U. von Gunten, M.J. Farré, Themed issue on
drinking water oxidation and disinfection processes, Environ.
Sci. Water Res. Technol., 6 (2020) 2252–2256.
- C. Liao, U.-J. Kim, K. Kannan, A review of environmental
occurrence, fate, exposure, and toxicity of benzothiazoles,
Environ. Sci. Technol., 52 (2018) 5007–5026.
- Y. Cousquer, A. Pryet, C. Delbart, R. Valois, A. Dupuy, Adaptive
optimization of a vulnerable well field, Hydrogeol. J., 27 (2019)
1673–1681.
- M. Janža, Optimization of well field management to mitigate
groundwater contamination using a simulation model and
evolutionary algorithm, Sci. Total Environ., 807 (2022) 150811,
doi: 10.1016/j.scitotenv.2021.150811.
- F. Ustaoğlu, Y. Tepe, Water quality and sediment contamination
assessment of Pazarsuyu Stream, Turkey using multivariate
statistical methods and pollution indicators, Int. Soil Water
Conserv. Res., 7 (2019) 47–56.
- APHA/AWWA/WEF, Standard Methods for the Examination
of Water and Wastewater. Standard Methods, American
Public Health Association (APHA), American Water Works
Association (AWWA), Water Environment Federation (WEF),
Washington, D.C., 2012.
- E. Kudlek, Formation of micropollutant decomposition
by-products during oxidation processes supported by natural
sunlight, Desal. Water Treat., 186 (2020) 361–372.
- C. Mahugo Santana, Z. Sosa Ferrera, M.E. Torres Padrón,
J.J. Santana Rodríguez, Methodologies for the extraction
of phenolic compounds from environmental samples: new
approaches, Molecules, 14 (2009) 298–320.
- J. Bohdziewicz, M. Dudziak, G. Kamińska, E. Kudlek,
Chromatographic determination and toxicological potential
evaluation of selected micropollutants in aquatic environment
– analytical problems, Desal. Water Treat., 57 (2016) 1361–1369.
- S. Pietrzak, Phosphates in ground waters under grasslands in
Poland, Woda Środ. Obsz. Wiej. T., 15 (2015) 89–100 (in Polish).
- S. Hänsel, Z. Ustrnul, E. Łupikasza, P. Skalak, Assessing
seasonal drought variations and trends over Central Europe,
Adv. Water Resour., 127 (2019) 53–75.
- E. Popek, Sampling and Analysis of Environmental Chemical
Pollutants, 2nd ed., Elsevier, Amsterdam, Netherlands, 2018.
- C.W. Liu, K.H. Lin, Y.M. Kuo, Application of factor analysis in
the assessment of groundwater quality in a Blackfoot disease
area in Taiwan, Sci. Total Environ., 313 (2003) 77–89.
- T. Stathers, J. Low, R. Mwanga, T. Carey, M. McEwan, S. David,
R. Gibson, S. Namanda, M. McEwan, J. Malinga,
R. Ackatia-Armah, M. Benjamin, H. Katcher, J. Blakenship, M. Andrade,
S. Agili, J. Njoku, K. Sindi, G. Mulongo,
S. Tumwegamire,
A. Njoku, E. Abidin, A. Mbabu, J. Mkumbira, K. Ogero,
S. Rajendran, J. Okello, A. Bechoff,
D. Ndyetabula, F. Grant,
J. Maru, H. Munyua, N. Mudege, T. Muzhingi, Everything You
Ever Wanted to Know About Sweetpotato: Reaching Agents of
Change ToT Manual, International Potato Center, Lima, Perú,
2018.
- C. Grant, D. Flaten, D. Tomasiewicz, S. Sheppard, The
importance of early season phosphorus nutrition, Can. J. Plant
Sci., 81 (2001) 211–224.
- S. Mondal, A.K. Mukherjee, T. Senapati, S. Haque, A.R. Ghosh,
Interrelationship Between TOC, IC, TC and DO, BOD, COD
of Water in Regard to Stratification of an Abandoned OCP
at Raniganj Coal Field Area, Burdwan, West Bengal, 1st
International Congress of Applied Ichthyology and Aquatic
Environment, Volos, Greece, 2014, pp. 25–29.
- Regulation of the Ministry of Maritime Economy and Inland
Navigation of 1 March 2019 on the List of Priority Substances,
Journal of Laws of 2019, (Item 528).
- Directive 2008/105/EC of the European Parliament and of
the Council of 16 December 2008 on Environmental Quality
Standards in the Field of Water Policy, Official Journal of the
European Union,
L 348/84.
- Act of 20 July 2017 – Water Law (Journal of Laws 2017, Item
1566 as Amended).
- M. Kluska, Dynamics of changes in the concentration of
polycyclic aromatic hydrocarbons in selected Polish surface
water, Ochr. Śr. Zasobów Nat., 31 (2020) 11–17.
- M. Foszpańczyk, E. Drozdek, M. Gmurek, S. Ledakowicz,
Toxicity of aqueous mixture of phenol and chlorophenols upon
photosensitized oxidation initiated by sunlight or vis-lamp,
Environ. Sci. Pollut. Res. Int., 25 (2018) 34968–34975.
- W.W. Anku, M.A. Mamo, P.P. Govender, Phenolic Compounds
in Water: Sources, Reactivity, Toxicity and Treatment Methods,
M. Soto-Hernandez, M. Palma-Tenango, M. del Rosario
Garcia-Mateos, Eds., Phenolic Compounds – Natural Sources,
Importance and Applications, IntechOpen, London, United
Kingdom, 2017.
- G. Luongo, R. Avagyan, R. Hongyu, C. Östman, The washout
effect during laundry on benzothiazole, benzotriazole,
quinoline, and their derivatives in clothing textiles, Environ.
Sci. Pollut. Res., 23 (2016) 2537–2548.
- P. Jiang, J. Qiu, Y. Gao, M.I. Stefan, X.-F. Li, Nontargeted
identification and predicted toxicity of new by-products
generated from UV treatment of water containing
micropollutant 2-mercaptobenzothiazole, Water Res.,
118 (2020) 116542, doi: 10.1016/j.watres.2020.116542.
- N. Esmaile, S. Mofavvaz, S. Shabaneh, M.R. Sohrabi, B. Torabi,
A simple colorimetric method using gold nanoparticles for the
detection of 2-mercaptobenzothiazole in aqueous solutions,
soil and rubber, Int. J. Environ. Anal. Chem., 8 (2020) 1–12,
doi: 10.1080/03067319.2020.1779241.
- H.-G. Ni, F.-H. Lu, X.-L. Luo, H.-Y. Tian, E.Y. Zeng, Occurrence,
phase distribution, and mass loadings of benzothiazoles in
riverine runoff of the Pearl River Delta, China, Environ. Sci.
Technol., 42 (2008) 1892–1897.
- L. Wang, J.J. Zhang, H.W. Sun, Q.X. Zhou, Widespread
occurrence of benzotriazoles and benzothiazoles in tap water:
influencing factors and contribution to human exposure,
Environ. Sci. Technol., 50 (2016) 2709–2717.
- E. Fries, Determination of benzothiazole in untreated
wastewater using polar-phase stir bar sorptive extraction and
gas chromatography–mass spectrometry, Anal. Chim. Acta,
689 (2011) 65–68.
- R. Avagyan, I. Sadiktsis, C. Bergvall, R. Westerholm, Tire tread
wear particles in ambient air—a previously unknown source
of human exposure to the biocide 2-mercaptobenzothiazole,
Environ. Sci. Pollut. Res., 21 (2014) 11580–11586.
- M.H. Whittaker, A.M. Gebhart, T.C. Miller, F. Hammer, Human
health risk assessment of
2-mercaptobenzothiazole in drinking
water, Toxicol. Ind. Health, 20 (2004) 149–163.
- M.P. Charnay, C. Verge, E. Barriuso, Influence of soil type and
water content on release of triticonazole from coated maize
seed, Pest Manage. Sci., 56 (2000) 249–256.
- H. Lin, B. Dong, J. Hu, Residue and intake risk assessment of
prothioconazole and its metabolite prothioconazole-desthio
in wheat field, Environ. Monit. Assess., 189 (2017) 236,
doi: 10.1007/s10661-017-5943-1.
- E. Tasumi, S. Kanazawa, S. Fukuda, Degradation of a herbicide,
beflubutamid, in upland soils and isolation of its degrading
microbes, Soil Sci. Plant, 53 (2007) 236–245.
- I.A. Tsakmakidis, A.G. Lymberopoulos, C. Alexopoulos,
C.M. Boscos, S.C. Kyriakis, In vitro effect of zearalenone and
α-zearalenol on boar sperm characteristics and acrosome
reaction, Reprod. Domest. Anim., 41 (2006) 394–401.
- M.S. Mostrom, Zearalenone, R. Gupta, Ed., Veterinary
Toxicology: Basic and Clinical Principles, Academic Press,
Cambridge, MA, USA, 2012.
- A. Mally, M. Solfrizzo, G.H. Degen, Biomonitoring of the
mycotoxin zearalenone: current state-of-the-art and application
to human exposure assessment, Arch. Toxicol., 90 (2016)
1281–1292.
- M. Dudziak, Analysis of zearalenone in aqueous environment
using GC-MS, Pol. J. Environ. Stud., 20 (2011) 231–235.
- N. Hartmann, M. Erbs, F.E. Wettstein, R.P. Schwarzenbach,
T.D. Bucheli, Quantification of estrogenic mycotoxins at the
ng/L level in aqueous environmental samples using deuterated
internal standards, J. Chromatogr. A, 1138 (2007) 132–140.
- K. Gromadzka, A. Waśkiewicz, P. Goliński, J. Świetlik,
Occurrence of estrogenic mycotoxin – zearalenone in aqueous
environmental samples with various NOM content, Water Res.,
43 (2009) 1051, doi:10.1016/j.watres.2008.11.042.