References

  1. T. Javaid, S. Mahmood, W. Saeed, M.Q. Alam, A critical review on varieties and benefits of almond (Prunus dulcis) – review, Acta Sci. Nutr. Health, 3 (2019) 70–72.
  2. J.M.H. Ighbareyeh, A. Cano-Ortiz, E. Cano, Case study: analysis of the physical factors of Palestinian bioclimate, Am. J. Clim. Change, 3 (2014) 223–231.
  3. A. Yadollahi, K. Arzani, A. Ebadi, M. Wirthensohn, S. Karimi, The response of different almond genotypes to moderate and severe water stress in order to screen for drought tolerance, Sci. Hortic., 129 (2011) 403–413.
  4. J.M.H. Ighbareyeh, E.C. Carmona, A.C. Ortiz, A. Abdel- Rahim Ahmed Suliemieh, M.M.H. Ighbareyeh, A. Al-Qader Mohammed Daraweesh, Analysis of physical factors of climate and bioclimate and their effects on almonds production to increase the economy in Hebron area of Palestine, Arabian J. Geosci., 11 (2018) 683, doi: 10.1007/s12517-018-4026-0.
  5. M. Yunos, N. Abdul-Hady, Irrigated Almond Cultivation Manual, (AMENCA3 Program), Palestine, 2018.
  6. D. Holland, I. Bar-Ya’akov, K. Hatib, R. Birger, ‘Matan’, a new self-compatible almond cultivar with high-quality kernel and good yield, Am. Soc. Hortic. Sci., 51 (2016) 302–304.
  7. The Applied Research Institute – Jerusalem (ARIJ), Palestinian Agricultural Production and Marketing between Reality and Challenges, Food Production-Consumption Assessment to Improve Sustainable Agriculture & Food Security in the West Bank, The Ministry of National Economy and The Ministry of Agriculture, Palestine, 2015.
  8. J.M.H. Ighbareyeh, E.C. Carmona, Impact of environment conditions on grapevine (Vitis vinifera L.): to optimal production and sustainability, achieving food security and increasing the Palestinian economy, J. Geosci. Environ. Prot., 6 (2018) 62–73.
  9. I. Moh’d Albaba, P. Gupta, Assessment of climate change impacts on wheat and Barley production quality and quantity in Palestine, Int. J. Bot. Stud., 2 (2017) 52–54.
  10. A. Abu Hammad, A.M. Salameh, Temperature analysis as an indicator of climate change in the Central Palestinian Mountains, Theor. Appl. Climatol., 136 (2019) 1453–1464.
  11. Palestinian Central Bureau of Statistics (PCBS), Agricultural Census 2006 – Final Results, Palestinian Territory, Ramallah, Palestine, 2017.
  12. Palestinian Central Bureau of Statistics (PCBS), National Accounts at Current and Constant Prices, 2015, Ramallah, Palestine, 2016.
  13. I. Paudel, H. Gerbi, Y. Wagner, A. Zisovich, G. Sapir, V. Brumfeld, T. Klein, Drought tolerance of wild versus cultivated tree species of almond and plum in the field, Tree Physiol., 40 (2020) 454–466.
  14. S. Toscano, A. Trivellini, G. Cocetta, R. Bulgari, A. Francini, D. Romano, A. Ferrante, Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce, Front. Plant Sci., 10 (2019) 01212, doi: 10.3389/ fpls.2019.01212.
  15. Palestinian Ministry of Agriculture, National Agricultural Sector Strategy (2017–2022), Ramallah, Palestine, 2016.
  16. A. Kumawat, D. Yadav, K. Samadharmam, I. Rashmi, Soil and Water Conservation Measures for Agricultural Sustainability, R.S. Meena, R. Datta, Eds., Soil Moisture Importance, IntechOpen, 2020.
  17. W.A. Abdullah, Pilot Cocoon Planting Technology as a Model to Enable the Growing of Olive and Almond Trees in Arid Condition in Palestine, Special Report, MENAQUA Land Restoration of the Middle East and North Africa, 2017.
  18. A. Oraee, E.G. Moghadam, The effect of different levels of irrigation with superabsorbent (S.A.P) treatment on growth and development of Myrobalan (Prunus cerasifera) seedling, Afr. J. Agric. Res., 8 (2013) 1813–1816.
  19. S. Mehraj, F.A. Peer, B.A. Pandit, I.A. Bisati, I.H. Ganai, Effect of organic and inorganic mulch es on growth, yield and quality attributes of plum cv. Santa Rosa under temperate conditions, Green Farm. Int. J., 6 (2014) 1048–1051.
  20. S.H. Al-Seekh, A.G. Mohammad, The effect of water harvesting techniques on runoff, sedimentation, and soil properties, Environ. Manage., 44 (2009) 37–45.
  21. A.Y. Safi, A.G. Mohammad, Impacts of different water harvesting techniques on barley productivity under semi-arid conditions in Palestine, Hebron Univ. Res. J. (A), 8 (2019) 66–80.
  22. M. Kumari, D. Singh, Water conservation: strategies and solutions, Int. J. Adv. Res. Rev., 1 (2016) 75–79.
  23. A.B. Saeed, A.M.N. Hamid, M.A.M. Abdalhi, A.A. Mohamed, Evaluation the effects of water harvesting techniques in improving water conservation and increasing crop yields, Int. J. Sci. Eng. Invest., 8 (2019) 106–114.
  24. J. Abedi-Koupai, J. Asadkazemi, Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes, Iran. Polym. J., 15 (2006) 715–725.
  25. C.K.K. Gachene, S.O. Nyawade, N.N. Karanja, Soil and Water Conservation: An Overview, W. Leal Filho, A.M. Azul, L. Brandli, P.G. Özuyar, T. Wall, Eds., Zero Hunger, Encyclopedia of the UN Sustainable Development Goals, Springer, Cham, 2019, pp. 1–15.
  26. ARIJ GIS, The Palestinian Community Profiles and Needs Assessment, Applied Research Institute-Jerusalem, 2009. Available at: http://vprofile.arij.org/bethlehem/
  27. https://geomolg.ps/L5/index.html?viewer=A3.V1
  28. Palestinian Astronomical Society [Unpublished Raw Data on Precipitation and Temperature], 2019.
  29. H. AL-Bakier, S. Tomeizh, Soil and Irrigation Department – Laboratory Manual, Laboratory of Soil Science, Hebron University, Faculty of Agriculture, Palestine, 2011.
  30. M. Pansu, J. Gautheyrou, Handbook of Soil Analysis, Mineralogical, Organic and Inorganic Methods, Springer Berlin, Heidelberg, 2006.
  31. E.S. Marx, J. Hart, R.G. Stevens, Soil Test Interpretation Guide, Oregon State University Extension Service, EC 1478, 1999. Available at: https://piercecd.org/DocumentCenter/View/670/ OSU-Soil-Test-Interpretation-002?bidId=
  32. D. Warncke, J.R. Brown, In: J.R. Brown, Ed., Potassium and Other Basic Cations: Recommended Chemical Soil Test Procedures for the North Central Region, North Central Regional Research Publication Bull. No. 221 (Revised), Missouri Agricultural Experiment Station SB 1001, University of Missouri, 1998, pp. 31–33.
  33. S.M. Combs, M.V. Nathan, In: J.R. Brown, Ed., Soil Organic Matter: Recommended Chemical Soil Test Procedures for the North Central Region, North Central Regional Research Publication Bull. No. 221 (Revised), Missouri Agricultural Experiment Station SB 1001, University of Missouri, 1998, pp. 53–58.
  34. D.A. Whitney, In: J.R. Brown, Ed., Soil Salinity: Recommended Chemical Soil Test Procedures for the North Central Region, North Central Regional Research Publication Bull. No. 221 (Revised), University of Missouri, 1998, pp. 59–60.
  35. D.A. Horneck, D.M. Sullivan, J.S. Owen, J.M. Hart, Soil Test Interpretation Guide, Oregon State University, EC 1478, 2011, pp. 1–12.
  36. H.D. Foth, Soil Mineralogy: Cation Exchange Capacity of Soils: Fundamentals of Soil Science, 8th ed., Published in Canada: Michigan State University, United States, Copyright by John Wiley and Sons, 1990, pp. 166–167.
  37. A. Pérez-Pastor, M.C. Ruiz-Sánchez, R. Domingo, Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot tree, Agric. Water Manage., 134 (2014) 110–118.
  38. T. Oweis, D. Prinz, A. Hachum, Water Harvesting: Indigenous Knowledge for the Future of the Drier Environments, ICARDA, Aleppo, Syria, 2001, 40 pages.
  39. P. Tamagnone, L. Cea, E. Comino, M. Rosso, Rainwater harvesting techniques to face water scarcity in African drylands: hydrological efficiency assessment, Water, 12 (2020) 2646, doi: 10.3390/w12092646.
  40. A.P. Whitmore, W. Richard Whalley, Physical effects of soil drying on roots and crop growth, J. Exp. Bot., 60 (2009) 2845–2857.
  41. A.M.A. Fattah, S.H. Khurshid, R.A. Ahmad, Soil Cracking Depth as Influenced by Soil Physical Properties, JZS, Special Issue, 2nd Int. Conference of Agricultural Sciences, The University of Sulaimani, Kurdistan Region, Iraq, 2018, pp. 105–114, doi: 10.17656/jzs.10657.
  42. W. Petros, G.B. Tesfahunegn, M. Berihu, J. Meinderts, Effectiveness of water-saving techniques on growth performance of Mango (Mangifera indica L.) Seedlings in Mihitsab-Azmati Watershed, Rama Area, Northern Ethiopia, Agric. Water Manage., 243 (2021) 106476, doi: 10.1016/j.agwat.2020.106476.
  43. Union of Agricultural Work Committees (UAWC), Fanack and Land Life Company (LLC), Pilot COCOON Planting Technology as a Model to Enable the Growing of Olive and Almond Trees in Arid Conditions in West Bank and Gaza Strip, Union of Agricultural Work Committees (UAWC), Palestine, 2017, pp. 1–21.
  44. Land Life Company (LLC), Benefits of the Cocoon Technology, 2015. Available at: https://landlifecompany.com/technology/ (Accessed on 28 March 2020).
  45. P.I. Tapia, L. Negoita, J.P. Gibbs, P. Jaramillo, Effectiveness of water-saving technologies during early stages of restoration of endemic Opuntia cacti in the Galápagos Islands, Ecuador, Peer J., 7 (2019) e8156, doi: 10.7717/peerj.8156.
  46. S. Bahadur, S. Pradhan, S. Verma, R. Maurya, S.K. Verma, Role of plastic mulch in soil health and crop productivity, Mulching Agric., 459 (2018) 338–344.
  47. K. Jabran, In: P.K. Sharma, B. Jirli, R.M. Cham, Role of Mulching in Pest Management and Agricultural Sustainability, Niğde, Turkey, 2019.
  48. H.-C. Pang, Y.-Y. Li, J.-S. Yang, Y.-S. Liang, Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions, Agric. Water Manage., 97 (2010) 1971–1977.
  49. J.C.M. Bordado, J.F.P. Gomes, New technologies for effective forest fire fighting, Int. J. Environ. Stud., 64 (2007) 243–251.
  50. A. Nirmala, T. Guvvali, Hydrogel/superabsorbent polymer for water and nutrient management in horticultural crops – review, Int. J. Chem. Stud., 7 (2019) 787–795.
  51. R. Liao, W. Wu, S. Ren, P. Yang, Effects of superabsorbent polymers on the hydraulic parameters and water retention properties of soil, J. Nanomater., 2016 (2016) 5403976, doi: 10.1155/2016/5403976.
  52. F. Demitri, C. Scalera, M. Madaghiele, A. Sannino, A. Maffezzoli, Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture, Int. J. Polym. Sci., 2013 (2013) 435073, doi: 10.1155/2013/435073.
  53. J. Yu, J.G. Shi, X. Ma, P.F. Dang, Y.L. Yan, A.I. Mamedov, I. Shainberg, G.J. Levy, Superabsorbent polymer properties and concentration effects on water retention under drying conditions, Soil Sci. Soc. Am. J., 81 (2017) 889–901.
  54. D.K. Dehkordi, The effects of superabsorbent polymers on soils and plants, Pertanika J. Trop. Agric. Sci., 39 (2016) 267–298.
  55. F. Nnadi, C. Brave, Environmentally friendly superabsorbent polymers for water conservation in agricultural lands, J. Soil Sci. Environ. Manage., 2 (2011) 206–211.
  56. M. Bakass, A. Mokhlisse, M. Lallemant, Absorption and desorption of liquid water by a superabsorbent polymer: Effect of polymer in the drying of the soil and the quality of certain plants, J. Appl. Polym. Sci., 83 (2002) 234–243.
  57. S. Siyamak, Functional Starch-Based Hydrogels: Renewable Material Solutions for Wastewater and Agriculture Industries, A Thesis Submitted for the Degree of Doctor of Philosophy at The University of Queensland, School of Chemical Engineering, Australia, 2020.
  58. Y. Tang, A.P. Wheeler, Chapter 10 – Environmental Factors That Influence Biodegradation of Thermal Poly(aspartate), R.A. Gross, C. Scholz, Eds., Biopolymers from Polysaccharides and Agroproteins, ACS Symposium Series, American Chemical Society, Vol. 786, 2001, pp. 157–171.
  59. A. Mignon, N. De Belie, P. Dubruel, S. Van Vlierberghe, Superabsorbent polymers: a review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives, Eur. Polym. J., 117 (2019) 165–178.
  60. S.C. Grossnickle, Importance of root growth in overcoming planting stress, New For., 30 (2005) 273–294.
  61. R. Basheer-Salimia, J.K. Ward, Climate change and its effects on olive tree physiology in Palestine, Rev. Res., 3 (2014) 1–7, doi: 10.9780/2249-894X/372014/688.
  62. C. Huang, U. Yermiyahu, M. Shenker, A. Ben-Gal, Effect of leaching events on the fate of polyhalite nutrient minerals used for crop fertilization, J. Plant Nutr., 43 (2020) 2518–2532.
  63. A. Eludoyin, O. Eludoyin, S. Eslamian, In: S. Eslamian, F. Eslamian, Eds., Drought Mitigation Practices, Handbook of Drought and Water Scarcity, Francis and Taylor, CRC Press, USA, 2017, pp. 391–400.
  64. L.G. Macera, S.R. Pereira, A.L.T. de Souza, Survival and growth of tree seedlings as a function of seed size in a gallery forest under restoration, Acta Bot. Bras., 31 (2017) 539–545.
  65. S.C. Grossnickle, Y.A. El-Kassaby, Bareroot versus container stocktypes: a performance comparison, New For., 47 (2016) 1–51.
  66. S.N. Jutras, N. Thiffault, A.D. Munson, Comparing large bareroot and container stock: water stress as influenced by peat and soil water availability, Tree Plant Notes, 52 (2007) 15–18.
  67. D.R. Gwaze, R. Melick, C. Studyvin, G. Hoss, In: L.E. Riley, R.K. Dumroese, T.D. Landis, Eds., Survival and Growth of Container and Bareroot Shortleaf Pine Seedlings in Missouri, National Proceedings: Forest and Conservation Nursery Associations – 2005, Proc. RMRS-P-43, Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, USDA Forest Services, 2006, pp. 123–127.
  68. E.R. Wilson, K.C. Vitols, A. Park, Root characteristics and growth potential of container and bare-root seedlings of red oak (Quercus rubra L.) in Ontario, Canada, New For., 34 (2007) 163–176.
  69. F. Renou-Wilson, U. Scallan, M. Keane, E.P. Farrell, Early performance of native birch (Betula spp.) planted on cutaway peatlands: influence of species, stock types and seedlings size, Eur. J. For. Res., 126 (2007) 545–554.
  70. V. Novak, Soil-Crack Characteristics — Estimation Methods Applied to Heavy Soils in the NOPEX Area, Agricultural and Forest Meteorology, 1999, pp. 98–99 and 501–507.
  71. F. Haghnazari, H. Shahgholi, M. Feizi, Factors affecting the infiltration of agricultural soils: review, Int. J. Agron. Agric. Res., 6 (2015) 21–35.
  72. W.-K. Song, Y.-J. Cui, A.M. Tang, W.-Q. Ding, Q. Wang, Experimental study on water evaporation from compacted clay using environmental chamber, Can. Geotech. J., 53 (2016) 1–57.
  73. C. Macci, S. Doni, E. Peruzzi, G. Masciandaro, C. Mennone, B. Ceccanti, Almond tree and organic fertilization for soil quality improvement in southern Italy, J. Environ. Manage., 95 (2012) S215–S222.
  74. M.E. Ramos, E. Benítez, P.A. García, A.B. Robles, Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: effects on soil quality, Appl. Soil Ecol., 44 (2010) 6–14.
  75. M. Kargar, R. Suresh, M. Legrand, P. Jutras, O.G. Clark, S.O. Prasher, Reduction in water stress for tree saplings using hydrogels in soil, J. Geosci. Environ. Prot., 5 (2017) 27–39.
  76. S. Gohari, A. Imani, A. Talaei, V. Bdossi, M.R. Sghari, Drought Effects on Growth, Water Content, and Organic Osmoprotectants in Promising Almond Genotypes with Different Drought Tolerance, This Work is Licensed Under a Creative Commons Attribution 4.0 International License, 2021, 12 pages.
  77. H. Nezami, R. Khazaei, Z.B. Rezazadeh, A. Hosseini, Effect of drought stress and defoliation on sunflower (Helianthus annuus L.) in controlled conditions, Desert, 12 (2008) 99–104.
  78. Z. Zamani, A. Taheri, A. Vezvaei, K. Poustini, Proline content and stomatal resistance of almond seedlings as affected by irrigation intervals, Acta Hortic., 591 (2002) 411–416.
  79. A. Zokaee-Khosroshah, M. Esna-Ashari, A. Ershadi, A. Imani, Morphological changes in response to drought stress in cultivated and wild almond species, Int. J. Hortic. Sci. Technol., 1 (2014) 79–92.
  80. T.S. Gikloo, B.E. Elhami, Physiological and morphological responses of two almond cultivars to drought stress and cycocel, Int. Res. J. Appl. Basic Sci., 3 (2012) 1000–1004.
  81. W. Hu, Z. Lu, F. Meng, X. Li, R. Cong, T. Ren, T.D. Sharkey, J. Lu, The reduction in leaf area precedes that in photosynthesis under potassium deficiency: the importance of leaf anatomy, New Phytol., 227 (2020) 1749–1763.
  82. P. Romero, J.M. Navarro, F. García, P.B. Ordaz, Effects of regulated deficit irrigation during the pre-harvest period on gas exchange, leaf development and crop yield of mature almond trees, Tree Physiol., 24 (2004) 303–312.
  83. V. Parkash, S. Singh, A review on potential plant-based water stress indicators for vegetable crops, Sustainability, 12 (2020) 3945, doi: 10.3390/su12103945.
  84. G.G. Marino, M. La Mantia, T. Caruso, F.P. Marra, Seasonal dynamics of photosynthesis and total carbon gain in bearing and nonbearing pistachio (Pistacia vera L.) shoots, Photosynthetica, 56 (2018) 932–941.
  85. P.A. Nortes, M.M. Gonzalez-Real, G. Egea, A. Baille, Seasonal effects of deficit irrigation on leaf photosynthetic traits of fruiting and non-fruiting shoots in almond trees, Tree Physiol., 29 (2009) 375–388.
  86. V. Udompetaikul, S.K. Upadhyaya, D.C. Slaughter, B.D. Lampinen, K. Shackel, Plant Water Stress Detection Using Leaf Temperature and Microclimatic Information, An ASABE Meeting Presentation, 2011, 10 pages.
  87. S. Karimi, A. Yadollahi, K. Arzani, A. Imani, M. Aghaalikhani, Gas-exchange response of almond genotypes to water stress, Photosynthetica, 53 (2015) 29–34.