References
- P. Aurica, V.-S. Ioan, G. Damian, G. Iepure, Removal of heavy
metals from wastewater by using zeolitic tuff, Carpathian
J. Earth Environ. Sci., 7 (2012) 239–248.
- S. Shirin, A. Jamal, C. Emmanouil, A.K. Yadav, Assessment of
characteristics of acid mine drainage treated with fly ash, Appl.
Sci., 11 (2021) 3910, doi: 10.3390/app11093910.
- K.G. Bhattacharyya, S.S. Gupta, Adsorptive accumulation of
Cd(II), Co(II), Cu(II), Pb(II) and Ni(II) ions from water onto
kaolinite: influence of acid activation, Adsorpt. Sci. Technol.,
27 (2009) 47–68.
- A. Roza Llera, A. Jimenez, L. Fernández-Díaz, Removal of Pb
from water: the effectiveness of gypsum and calcite mixtures,
Minerals, 11 (2021) 66, doi: 10.3390/min11010066.
- W. Stumm, J.J. Morgan, Aquatic Chemistry: Chemical Equilibria
and Rates in Natural Waters, 3rd ed., Wiley, New York, 1996.
- Y. Yi, J. Wen, G. Zeng, T. Zhang, F. Huang, H. Qin, S. Tian,
A comparative study for the stabilisation of heavy metal
contaminated sediment by limestone, MnO2 and natural zeolite,
Environ. Sci. Pollut. Res., 24 (2017) 795–804.
- A. Ciosek, G. Luk, Kinetic modelling of the removal of multiple
heavy metallic ions from mine waste by natural zeolite sorption,
Water, 9 (2017) 482, doi: 10.3390/w9070482.
- L. Reczek, M.M. Michel, Y. Trach, T. Siwiec, M. Tytkowska-Owerko, The kinetics of manganese sorption on Ukrainian tuff
and basalt—order and diffusion models analysis, Minerals,
10 (2020) 1065, doi:10.3390/min10121065.
- A.N. Shabalala, S.O. Ekolu, S. Diop, F. Solomon, Pervious
concrete reactive barrier for removal of heavy metals from acid
mine drainage−column study, J. Hazard. Mater., 323 (2017)
641–653.
- Y. Trach, M. Tytkowska-Owerko, L. Reczek, M. Michel,
Comparison the adsorption capacity of Ukrainian tuff and
basalt with zeolite–manganese removal from water solution,
J. Ecol. Eng., 22 (2021) 161–168.
- Y. Trach, V. Melnychuk, M.M. Michel, L. Reczek, T. Siwiec,
R. Trach, The characterization of Ukrainian vVolcanic tuffs from
the Khmelnytsky Region with the theoretical analysis of their
application in construction and environmental technologies,
Materials, 14 (2021) 7723, doi: 10.3390/ma14247723.
- X. Wang, H. Jiang, D. Fang, J. Liang, L. Zhou, A novel approach
to rapidly purify acid mine drainage through chemically
forming Schwertmannite followed by lime neutralization,
Water Res., 151 (2019) 515–522.
- M.P. Andersson, H. Sakuma, S.L.S. Stipp, Strontium, nickel,
cadmium, and lead substitution into calcite, studied by density
functional theory, Langmuir, 30 (2014) 6129–6133.
- A.D. Davis, C.J. Webb, J.L. Sorensen, D.J. Dixon, R. Hudson,
Geochemical thermodynamics of cadmium removal from water
with limestone, Environ. Earth Sci., 77 (2018) 37, doi: 10.1007/s12665-017-7205-5.
- F. Di Lorenzo, G. Cametti, D. Vanhecke, S.V. Churakov, The role
of interfaces in controlling Pb2+ removal by calcium carbonate
minerals, Cryst. Growth Des., 20 (2020) 6157–6169.
- W. Dickson, Y.-W. Brodin, Strategies and Methods for
Freshwater Liming, L. Henrikson, Y.W. Brodin, Eds., Liming of
Acidified Surface Waters: A Swedish Synthesis, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1995, pp. 81–124.
- U. Hoffmann, S.L.S. Stipp, The behavior of Ni2+ on calcite
surfaces, Geochim. Cosmochim. Acta, 65 (2001) 4131–4139.
- P. Andersson, H. Borg, P. Kärrhage, Mercury in fish muscle
in acidified and limed lakes, Water Air Soil Pollut., 80 (1995)
889–892.
- O. Lindqvist, K. Johansson, L. Bringmark, B. Timm, M. Aastrup,
A. Andersson, G. Hovsenius, L. Håkanson,
Å. Iverfeldt,
M. Meili, Mercury in the Swedish environment — recent
research on causes, consequences and corrective methods,
Water Air Soil Pollut., 55 (1991) 242–261.
- M. Verta, S. Rekolainen, J. Mannio, K. Surma-Aho, The Origin
and Level of Mercury in Finnish Forest Lakes, Publications
of the Water Research Institute – National Board of Waters
(Finland), 1986.
- L. Henrikson, Y.W. Brodin, Liming of Acidified Surface
Waters: A Swedish Synthesis, Springer, New York, Berlin,
1995. Available at http://catalog.hathitrust.org/api/volumes/oclc/31328351.html (Accessed: Sep. 04, 2021).
- L. Li, C.H. Benson, E.M. Lawson, Impact of mineral fouling
on hydraulic behavior of permeable reactive barriers, Ground
Water, 43 (2005) 582–596.
- J.W. Morse, F.T. Mackenzie, Geochemistry of Sedimentary
Carbonates, Elsevier, 1990.
- A.M. Silva, R.M.F. Lima, V.A. Leão, Mine water treatment
with limestone for sulfate removal, J. Hazard. Mater., 221–222
(2012) 45–55.
- M.A. Mercy, P.A. Rock, W.H. Casey, M.M. Mokarram, Gibbs
energies of formation for hydrocerussite
[Pb(OH)2(PbCO3)2(S)]
and hydrozincite [Zn(OH)2]3(ZnCO3)2(S)] at 298 K and 1 bar
from electrochemical cell measurements, Am. Mineral.,
83 (1998) 739–745.
- S.S. Zumdahl, S.A. Zumdahl, T.J. Hummel, Chemistry,
Houghton Mifflin, Boston, 2000.
- J.S. Meyer, Effects of water chemistry on bioavailability and
toxicity of waterborne cadmium, copper, nickel, lead, and zinc
to freshwater organisms, Soc. Environ. Toxicol. Chem., (2007)
259–294.
- J.M. Zachara, C.E. Cowan, C.T. Resch, Sorption of divalent metals
on calcite, Geochim. Cosmochim. Acta, 55 (1991) 1549–1562.
- L. Dithmer, A.S. Lipton, K. Reitzel, T.E. Warner, D. Lundberg,
U.G. Nielsen, Characterization of phosphate sequestration
by a lanthanum modified bentonite clay: a solid-state NMR,
EXAFS, and PXRD study, Environ. Sci. Technol., 49 (2015)
4559–4566.
- J. Ahlgren, K. Reitzel, R. Danielsson, A. Gogoll, E. Rydin,
Biogenic phosphorus in oligotrophic mountain lake sediments:
differences in composition measured with NMR spectroscopy,
Water Res., 40 (2006) 3705–3712.
- I. de Vicente, H.S. Jensen, F.Ø. Andersen, Factors affecting
phosphate adsorption to aluminum in lake water: implications
for lake restoration, Sci. Total Environ., 389 (2008) 29–36.
- Y. Trach, V. Melnychuk, G. Melnychuk, Ł. Mazur, A. Podlasek,
M.D. Vaverková, E. Koda, Using local mineral materials for the
rehabilitation of the Ustya River – a case study, Desal. Water
Treat., 232 (2021) 346–356.
- N. Sherstyuk, S. Serduk, Results of the study of heavy metals
in water rivers Ingulets and Saksagan, Hydrol. Hydrochem.
Hydroecol., 36 (2015) 101–110.
- E.-T. Tolonen, A. Sarpola, T. Hu, J. Rämö, U. Lassi, Acid
mine drainage treatment using by-products from quicklime
manufacturing as neutralization chemicals, Chemosphere,
117 (2014) 419–424.
- M. Michel, M. Tytkowska, L. Reczek, Y. Trach, T. Siwiec,
Technological conditions for the coagulation of wastewater
from cosmetic industry, J. Ecol. Eng., 20 (2019) 78–85.
- V. Yanamadala, Calcium carbonate phosphate binding ion
exchange filtration and accelerated denitrification improve
public health standards and combat eutrophication in aquatic
ecosystems, Water Environ. Res., 77 (2005) 3003–3012.
- Y. Liu, X. Sheng, Y. Dong, Y. Ma, Removal of high-concentration
phosphate by calcite: effect of sulfate and pH, Desalination,
289 (2012) 66–71.
- F.G. Offeddu, J. Cama, J.M. Soler, M.G. Dávila Ordoñez,
A. McDowell, T. Craciunescu, I. Tiseanu, Processes affecting
the efficiency of limestone in passive treatments for AMD:
column experiments, J. Environ. Chem. Eng., 3 (2015) 304–316.
- J.W. Morse, R.S. Arvidson, A. Lüttge, Calcium carbonate
formation and dissolution, Chem. Rev., 107 (2007) 342–381.
- USEPA, Quality Criteria for Water, Off. Water Regul. Stand.,
1986.
- A. Gómez Arias, J. Castillo, M. Welman-Purchase,
J. Posthumus, E. van Heerden, Evidences of Effective
Treatment of Alkaline Mine Drainage with BaCO3, 10th
International Conference on Acid Rock Drainage & IMWA
Annual Conference, 2015. Available at https://www.imwa.info/docs/imwa_2015/IMWA2015_Gomez_303.pdf
- F.G. Smith, The ore deposition temperature and pressure at
the McIntyre Mine, Ontario, Econ. Geol., 43 (1948) 627–636.
- S. Verheyden, D. Genty, O. Cattani, M.R. van Breukelen, Water
release patterns of heated speleothem calcite and hydrogen
isotope composition of fluid inclusions, Chem. Geol., 247 (2008)
266–281.
- J.A. Harrell, J.G. Dunn, J.W. Welshimer, Effect of crystal size on
dolomite decrepitation in glass furnaces, Glass Technol.: Eur.
J. Glass Sci. Technol., Part A, 47 (2006) 188–192.
- G. Suraj, C.S.P. Iyer, M. Lalithambika, Adsorption of cadmium
and copper by modified kaolinites, Appl. Clay Sci., 13 (1998)
293–306.
- G.B. Lawrence, D.A. Burns, K. Riva-Murray, A new look at
liming as an approach to accelerate recovery from acidic
deposition effects, Sci. Total Environ., 562 (2016) 35–46.
doi:10.1016/j.scitotenv.2016.03.176.
- E. Lydersen, S. Löfgren, R.T. Arnesen, Metals in Scandinavian
Surface Waters: Effects of Acidification, Liming, and Potential
Reacidification, Crit. Rev. Environ. Sci. Technol., 32 (2002)
73–295. doi:10.1080/10643380290813453.
- C. Bernes, Acidification and Liming of Swedish Freshwaters,
Swedish Environmental Protection Agency, Sweden, 1991.
- S.D. George, B.P. Baldigo, G.B. Lawrence, R.L. Fuller, Effects
of watershed and in-stream liming on macroinvertebrate
communities in acidified tributaries to an Adirondack lake,
Ecol. Indic., 85 (2018) 1058–1067.
- V.V. Goncharuk, V.A. Bagrii, L.A. Mel’nik, R.D. Chebotareva,
S. Yu. Bashtan, The use of redox potential in water treatment
processes, J. Water Chem. Technol., 32 (2010) 1–9.
- S. Pegler, B. Simmatis, A.L. Labaj, C. Meyer-Jacob, J.P. Smol,
Long-term changes in chironomid assemblages linked to lake
liming and fertilization in previously acidified Middle Lake
(Sudbury, Canada), Water Air Soil Pollut., 231 (2020) 410,
doi: 10.1007/s11270-020-04780-y.
- D.G. Angeler, S. Drakare, R.K. Johnson, S. Köhler, T. Vrede,
Managing ecosystems without prior knowledge: pathological
outcomes of lake liming, Ecol. Soc., 22 (2017) 44, doi: 10.5751/ES-09794-220444.
- B.G. Mckie, Z. Petrin, B. Malmqvist, Mitigation or disturbance?
Effects of liming on macroinvertebrate assemblage structure
and leaf-litter decomposition in the humic streams of northern
Sweden: liming and litter decomposition in humic streams,
J. Appl. Ecol., 43 (2006) 780–791.
- M. Wołowiec, M. Komorowska-Kaufman, A. Pruss, G. Rzepa,
T. Bajda, Removal of heavy metals and metalloids from water
using drinking water treatment residuals as adsorbents:
a review, Minerals, 9 (2019) 487, doi:10.3390/min9080487.