References
- A. Abramson, A. Tal, N. Becker, N. El-Khateeb, L. Asaf, A. Assi,
E. Adar, Stream restoration as a basis for Israeli–Palestinian
cooperation: a comparative analysis of two transboundary
streams, Int. J. River Basin Manage., 8 (2010) 39–53.
- M.W. Rosegrant, Global Outlook for Water Scarcity,
Food Security, and Hydropower, K. Burnett, R. Howitt,
J.A. Roumasset, C.A. Wada, Eds., Handbook of Water
Economics and Institutions, Routledge, New York, 2015.
- C.J. Vörösmarty, P.B. Mcintyre, M.O. Gessner, D. Dudgeon,
A. Prusevich, P. Green, P.M. Davies, Global threats to human
water security and river biodiversity, Nature, 467 (2010)
555–561.
- J. Vymazal, Constructed wetlands for treatment of industrial
wastewaters: a review, Ecol. Eng., 73 (2014) 724–751.
- W. Li, T. Hua, Q. Zhou, S. Zhang, W. Rong, Toxicity identification
and high-efficiency treatment of aging chemical industrial
wastewater from the Hangu reservoir, China, J. Environ. Qual.,
40 (2011) 1714–1721.
- G. Daghrah, R.M.Y. Al-Sa’ed, Treated wastewater impact on Al
Qilt catchment area-Palestine, Asian J. Earth Sci., 2 (2009) 58–70.
- Q. Wang, Z. Yang, Industrial water pollution, water environment
treatment, and health risks in China, Environ. Pollut., 218 (2016)
358–365.
- K.M.F. Largo, J.L.R. Depablos, E.F. Espitia-Sarmiento,
N.M. Moreta, Artificial floating island with Vetiver for
treatment of arsenic-contaminated water: a real scale study in
High-Andean Reservoir, Water, 12 (2020) 3086, doi: 10.3390/w12113086.
- J.U. Ahmad, M.A. Goni, Heavy metal contamination in
water, soil, and vegetables of the industrial areas in Dhaka,
Bangladesh, Environ. Monit. Assess., 166 (2009) 347–357.
- J.N. Edokpayi, J.O. Odiyo, O.S. Durowoju, Impact of Wastewater
on Surface Water Quality in Developing Countries: A Case
Study of South Africa, H. Tutu, Ed., Water Quality, InTechOpen
Science, 2017, pp. 401–416, doi: 10.5772/66561.
- X. Huang, F. Zhao, G. Yu, C. Song, Z. Geng, P. Zhuang,
Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary using the
Phragmites australis artificial floating wetlands, Biomed Res. Int.,
2017 (2017) 1–10, doi:10.1155/2017/6201048.
- H. Sarma, Metal hyperaccumulation in plants: a review focusing
on phytoremediation technology, J. Environ. Sci. Technol.,
4 (2011) 118–138.
- C. Wu, C. Kao, K. Chen, W. Sung, C. Lin, Applying Natural
Treatment Systems for the Improvement of the Quality of River
Water, Proc. 5th Int. Conference on Responsive Manufacturing
- Green Manufacturing, 2010.
- A.A. Suhad, A.N. Almuktar, S.N. Abed, M. Scholz, Wetlands
for wastewater treatment and subsequent recycling of
treated effluent: a review, Environ. Sci. Pollut. Res., 25 (2018)
23595–23623.
- E.Y. Yaqob, R. Al-Sa’ed, G. Sorial, M. Suidan, Situation analysis
and perspectives of transboundary wastewater management
along Israel/Palestine borders, Asian J. Appl. Sci. Eng., 3 (2014)
135–150.
- S. Samhan, F. Kurt, G. Marwan, A. Wasim, J. Ayman, Domestic
Water Quality in the West Bank Aquifers, Palestine: Overview
on the Major Parameters, Proc. 2nd Int. Conference on Water
Values and Rights, 2010, pp. 620–628.
- R. Al‐Sa’ed, A policy framework for trans-boundary wastewater
issues along the Green Line, the Israeli–Palestinian border,
Int. J. Environ. Stud., 67 (2010) 937–954.
- E.Y. Yaqob, R. Al-Sa’ed, G. Sorial, M. Suidan, Simulation of
transboundary wastewater resource management scenarios in
the Wadi Zomer watershed, using a WEAP model, Int. J. Basic
Appl. Sci., 4 (2015) 27–35.
- H. Shraideh, J. Hasan, S. Samhan, Water Quality Modeling
of Zomar Stream with Considerations of Current and Future
Solutions, Proc. 7th Int. Water Technology Conference, IWTC17,
Istanbul, 2013, pp. 5–7.
- S. Abu Ghosh, Y. Abu Jaffal, M. Homeidan, R. Abu Salama,
S. Bitar, Wastewater Treatment Plant Nablus West, Unpublished
Annual Report, Nablus Municipality, Nablus, Palestine,
2020.
- S. Sulieman, Environmental Flow Regime for Wadi Zomar,
M.Sc. Thesis, Faculty of Graduate Studies, Birzeit University,
Birzeit, Palestine, 2010.
- APHA, American Public Health Association, Standard
Methods for the Examination of Water and Wastewater,
23rd ed., APHA-AWWA-WEF, Washington, D.C., 2017.
- M. Pansu, J. Gautheyrou, Handbook of Soil Analysis:
Mineralogical, Organic and Inorganic Methods, Springer-
Verlag Berlin Heidelberg, Germany, 2006, pp. 581–591.
- A.O. Bello, B.S. Tawabini, A.B. Khalil, C.R. Boland, T.A. Saleh,
Phytoremediation of cadmium-, lead- and nickel-contaminated
water by Phragmites australis in hydroponic systems, Ecol. Eng.,
120 (2018) 126–133.
- J.C. Akan, F.I. Abdulrahman, G.A. Dimari, V.O. Ogugbuaja,
Physicochemical determination of pollutants in wastewater
and vegetable samples along the Jakara wastewater channel in
Kano Metropolis, Kano State, Nigeria, Eur. J. Sci. Res., 23 (2008)
122–133.
- V. Matamoros, Y. Rodríguez, Influence of seasonality and
vegetation on the attenuation of emerging contaminants in
wastewater effluent-dominated streams. A preliminary study,
Chemosphere, 186 (2017) 269–277.
- M. Cañedo-Argüelles, B.J. Kefford, C. Piscart, N. Prat,
R.B. Schäfer, C.-J. Schulz, Salinisation of rivers: an urgent
ecological issue, Environ. Pollut., 173 (2013) 157–167.
- B.B. Mamba, R.W. Krause, B. Matsebula, J. Haarhof, Monitoring
natural organic matter and disinfection by-products at different
stages in two South African water treatment plants, Water SA,
35 (2009) 121–127.
- PSI, Palestinian Standards Institution, Technical Specification
for Industrial Wastewater Discharge into Surface Water Bodies,
PSI, Al-Bireh, Palestine, 2010.
- G.S. Dheri, M.S. Brar, S.S. Malhi, Heavy-metal concentration
of sewage‐contaminated water and its impact on underground
water, soil, and crop plants in alluvial soils of northwestern
India, Commun. Soil Sci. Plant Anal., 38 (2007) 1353–1370.
- Y. Qian, W. Zhang, L. Yu, H. Feng, Metal pollution in coastal
sediments, Curr. Pollut. Rep., 1 (2015) 203–219.
- X. Lu, Y. Zhang, H. Liu, M. Xing, X. Shao, F. Zhao, X. Li, Q. Liu,
D. Yu, X. Yuan, M. Yuan, Influence of early diagenesis on the
vertical distribution of metal forms in sediments of Bohai Bay,
China, Mar. Pollut. Bull., 88 (2014) 155–161.
- R. Khan, M.S. Islam, A.R.M. Tareq, K. Naher, A.R. Islam,
M.A. Habib, A.B. Siddique, M.A. Islam, S. Das, B. Rashid,
A.K.M. Atique Ullah, M.H. Miah, S.U. Masrura, Md. Bodrud-
Doza, M.R. Sarker, A.B.M. Badruzzaman, Distribution, sources
and ecological risk of trace elements and polycyclic aromatic
hydrocarbons in sediments from a polluted urban river in
central Bangladesh, Environ. Nanotechnol. Monit. Manage.,
14 (2020) 100318, doi: 10.1016/j.enmm.2020.100318.
- A.E. Nemr, A. Khaled, A.E. Sikaily, Distribution and statistical
analysis of leachable and total heavy metals in the sediments of
the Suez Gulf, Environ. Monit. Assess., 118 (2006) 89–112.
- J. Milke, M. Gałczyńska, J. Wróbel, The importance of biological
and ecological properties of Phragmites australis (Cav.) Trin.
Ex Steud., in phytoremendiation of aquatic ecosystems—the
review, Water, 12 (2020) 1770, doi: 10.3390/w12061770.
- M.J. Shahid, S. Ali, G. Shabir, M. Siddique, M. Rizwan,
M.F. Seleiman, M. Afzal, Comparing the performance of four
macrophytes in bacterial assisted floating treatment wetlands
for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr)
from polluted river water, Chemosphere, 243 (2020) 125353,
doi:10.1016/j.chemosphere.2019.125353.
- D. Baldantoni, R. Ligrone, A. Alfani, Macro- and trace-element
concentrations in leaves and roots of Phragmites australis in a
volcanic lake in Southern Italy, J. Geochem. Explor., 101 (2009)
166–174.
- C. Bragato, H. Brix, M. Malagoli, Accumulation of nutrients
and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel
and Bolboschoenus maritimus (L.) Palla in a constructed wetland
of the Venice lagoon watershed, Environ. Pollut., 144 (2006)
967–975.
- N. Karami, R. Clemente, E. Moreno-Jiménez, N.W. Lepp,
L. Beesley, Efficiency of green waste compost and biochar
soil amendments for reducing lead and copper mobility and
uptake to ryegrass, J. Hazard. Mater., 191 (2011) 41–48.
- E. Stoltz, M. Greger, Accumulation properties of As, Cd,
Cu, Pb and Zn by four wetland plant species growing on
submerged mine tailings, Environ. Exp. Bot., 47 (2002) 271–280.
- T. Sawidis, M. Chettri, G. Zachariadis, J. Stratis, Heavy metals in
aquatic plants and sediments from water systems in Macedonia,
Greece, Ecotoxicol. Environ. Saf., 32 (1995) 73–80.
- Y. Ji, P. Vollenweider, M. Lenz, R. Schulin, S. Tandy, Can
iron plaque affect Sb(III) and Sb(V) uptake by plants under
hydroponic conditions, Environ. Exp. Bot., 148 (2018) 168–175.
- L. Windham, J. Weis, P. Weis, Uptake and distribution of metals
in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed), Estuarine
Coastal Shelf Sci., 56 (2003) 63–72.
- R.L. Chaney, Toxic Element Accumulation in Soils and Crops:
Protecting Soil Fertility and Agricultural Food-Chains, B. Bar-
Yosef, N.J. Barrow, J. Goldshmid, Eds., Inorganic Contaminants
in the Vadose Zone, Ecological Studies (Analysis and Synthesis),
Vol. 74, Springer, Berlin, Heidelberg, 1989.
- J.H. Peverly, J.M. Surface, T. Wang, Growth and trace metal
absorption by Phragmites australis in wetlands constructed for
landfill leachate treatment, Ecol. Eng., 5 (1995) 21–35.
- A. Fairbrother, R. Wenstel, K. Sappington, W. Wood, Framework
for metals risk assessment, Ecotoxicol. Environ. Saf., 68 (2007)
145–227.
- T. Yeh, C. Chou, C. Pan, Heavy metal removal within pilot-scale
constructed wetlands receiving river water contaminated by
confined swine operations, Desalination, 249 (2009) 368–373.
- N. Tam, Y. Wong, Retention and distribution of heavy metals in
mangrove soils receiving wastewater, Environ. Pollut., 94 (1996)
283–291.
- C. Carranza-Álvarez, A.J. Alonso-Castro, M.C. Torre, R.F. Cruz,
Accumulation and distribution of heavy metals in Scirpus
americanus and Typha latifolia from an artificial lagoon in San
Luis Potosí, México, Water Air Soil Pollut., 188 (2007) 297–309.
- D. Phillips, L. Human, J. Adams, Wetland plants as indicators
of heavy metal contamination, Mar. Pollut. Bull., 92 (2015)
227–232.
- B.E. Keller, K. Lajtha, S. Cristofor, Trace metal concentrations
in the sediments and plants of the Danube Delta, Romania,
Wetlands, 18 (1998) 42–50.
- A. Samecka-Cymerman, D. Stepien, A.J. Kempers, Efficiency
in removing pollutants by constructed wetland purification
systems in Poland, J. Toxicol. Environ. Health Part A, 67 (2004)
265–275.
- G.D. Laing, A.V. Moortel, W. Moors, P.D. Grauwe, E. Meers,
F. Tack, M. Verloo, Factors affecting metal concentrations in
reed plants (Phragmites australis) of intertidal marshes in the
Scheldt estuary, Ecol. Eng., 35 (2009) 310–318.
- E. Lesage, D. Rousseau, E. Meers, F. Tack, N.D. Pauw,
Accumulation of metals in a horizontal subsurface flow
constructed wetland treating domestic wastewater in Flanders,
Belgium, Sci. Total Environ., 380 (2007) 102–115.
- S.E. Allen, Chemical Analysis of Ecological Materials, 2nd ed.,
Blackwell, Oxford, UK, 1989, 368 pp.
- J. Vymazal, T. Březinová, Heavy metals in plants in constructed
and natural wetlands: concentration, accumulation and
seasonality, Water Sci. Technol., 71 (2015) 268–276.
- J.S. Bermejo, R. Beltrán, J.G. Ariza, Spatial variations of
heavy metals contamination in sediments from Odiel River
(Southwest Spain), Environ. Int., 29 (2003) 69–77.
- H. Feng, H. Jiang, W. Gao, M.P. Weinstein, Q. Zhang, W. Zhang,
Metal contamination in sediments of the western Bohai Bay
and adjacent estuaries, China, J. Environ. Manage., 92 (2011)
1185–1197.
- A.P. Dean, S. Lynch, P. Rowland, B.D. Toft, J.K. Pittman,
K.N. White, Natural wetlands are efficient at providing longterm
metal remediation of freshwater systems polluted by acid
mine drainage, Environ. Sci. Technol., 47 (2013) 12029–12036.