References

  1. A. Abramson, A. Tal, N. Becker, N. El-Khateeb, L. Asaf, A. Assi, E. Adar, Stream restoration as a basis for Israeli–Palestinian cooperation: a comparative analysis of two transboundary streams, Int. J. River Basin Manage., 8 (2010) 39–53.
  2. M.W. Rosegrant, Global Outlook for Water Scarcity, Food Security, and Hydropower, K. Burnett, R. Howitt,
    J.A. Roumasset, C.A. Wada, Eds., Handbook of Water Economics and Institutions, Routledge, New York, 2015.
  3. C.J. Vörösmarty, P.B. Mcintyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, P.M. Davies, Global threats to human water security and river biodiversity, Nature, 467 (2010) 555–561.
  4. J. Vymazal, Constructed wetlands for treatment of industrial wastewaters: a review, Ecol. Eng., 73 (2014) 724–751.
  5. W. Li, T. Hua, Q. Zhou, S. Zhang, W. Rong, Toxicity identification and high-efficiency treatment of aging chemical industrial wastewater from the Hangu reservoir, China, J. Environ. Qual., 40 (2011) 1714–1721.
  6. G. Daghrah, R.M.Y. Al-Sa’ed, Treated wastewater impact on Al Qilt catchment area-Palestine, Asian J. Earth Sci., 2 (2009) 58–70.
  7. Q. Wang, Z. Yang, Industrial water pollution, water environment treatment, and health risks in China, Environ. Pollut., 218 (2016) 358–365.
  8. K.M.F. Largo, J.L.R. Depablos, E.F. Espitia-Sarmiento, N.M. Moreta, Artificial floating island with Vetiver for treatment of arsenic-contaminated water: a real scale study in High-Andean Reservoir, Water, 12 (2020) 3086, doi: 10.3390/w12113086.
  9. J.U. Ahmad, M.A. Goni, Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh, Environ. Monit. Assess., 166 (2009) 347–357.
  10. J.N. Edokpayi, J.O. Odiyo, O.S. Durowoju, Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa, H. Tutu, Ed., Water Quality, InTechOpen Science, 2017, pp. 401–416, doi: 10.5772/66561.
  11. X. Huang, F. Zhao, G. Yu, C. Song, Z. Geng, P. Zhuang, Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary using the Phragmites australis artificial floating wetlands, Biomed Res. Int., 2017 (2017) 1–10, doi:10.1155/2017/6201048.
  12. H. Sarma, Metal hyperaccumulation in plants: a review focusing on phytoremediation technology, J. Environ. Sci. Technol., 4 (2011) 118–138.
  13. C. Wu, C. Kao, K. Chen, W. Sung, C. Lin, Applying Natural Treatment Systems for the Improvement of the Quality of River Water, Proc. 5th Int. Conference on Responsive Manufacturing - Green Manufacturing, 2010.
  14. A.A. Suhad, A.N. Almuktar, S.N. Abed, M. Scholz, Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review, Environ. Sci. Pollut. Res., 25 (2018) 23595–23623.
  15. E.Y. Yaqob, R. Al-Sa’ed, G. Sorial, M. Suidan, Situation analysis and perspectives of transboundary wastewater management along Israel/Palestine borders, Asian J. Appl. Sci. Eng., 3 (2014) 135–150.
  16. S. Samhan, F. Kurt, G. Marwan, A. Wasim, J. Ayman, Domestic Water Quality in the West Bank Aquifers, Palestine: Overview on the Major Parameters, Proc. 2nd Int. Conference on Water Values and Rights, 2010, pp. 620–628.
  17. R. Al‐Sa’ed, A policy framework for trans-boundary wastewater issues along the Green Line, the Israeli–Palestinian border, Int. J. Environ. Stud., 67 (2010) 937–954.
  18. E.Y. Yaqob, R. Al-Sa’ed, G. Sorial, M. Suidan, Simulation of transboundary wastewater resource management scenarios in the Wadi Zomer watershed, using a WEAP model, Int. J. Basic Appl. Sci., 4 (2015) 27–35.
  19. H. Shraideh, J. Hasan, S. Samhan, Water Quality Modeling of Zomar Stream with Considerations of Current and Future Solutions, Proc. 7th Int. Water Technology Conference, IWTC17, Istanbul, 2013, pp. 5–7.
  20. S. Abu Ghosh, Y. Abu Jaffal, M. Homeidan, R. Abu Salama, S. Bitar, Wastewater Treatment Plant Nablus West, Unpublished Annual Report, Nablus Municipality, Nablus, Palestine, 2020.
  21. S. Sulieman, Environmental Flow Regime for Wadi Zomar, M.Sc. Thesis, Faculty of Graduate Studies, Birzeit University, Birzeit, Palestine, 2010.
  22. APHA, American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 23rd ed., APHA-AWWA-WEF, Washington, D.C., 2017.
  23. M. Pansu, J. Gautheyrou, Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods, Springer- Verlag Berlin Heidelberg, Germany, 2006, pp. 581–591.
  24. A.O. Bello, B.S. Tawabini, A.B. Khalil, C.R. Boland, T.A. Saleh, Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems, Ecol. Eng., 120 (2018) 126–133.
  25. J.C. Akan, F.I. Abdulrahman, G.A. Dimari, V.O. Ogugbuaja, Physicochemical determination of pollutants in wastewater and vegetable samples along the Jakara wastewater channel in Kano Metropolis, Kano State, Nigeria, Eur. J. Sci. Res., 23 (2008) 122–133.
  26. V. Matamoros, Y. Rodríguez, Influence of seasonality and vegetation on the attenuation of emerging contaminants in wastewater effluent-dominated streams. A preliminary study, Chemosphere, 186 (2017) 269–277.
  27. M. Cañedo-Argüelles, B.J. Kefford, C. Piscart, N. Prat, R.B. Schäfer, C.-J. Schulz, Salinisation of rivers: an urgent ecological issue, Environ. Pollut., 173 (2013) 157–167.
  28. B.B. Mamba, R.W. Krause, B. Matsebula, J. Haarhof, Monitoring natural organic matter and disinfection by-products at different stages in two South African water treatment plants, Water SA, 35 (2009) 121–127.
  29. PSI, Palestinian Standards Institution, Technical Specification for Industrial Wastewater Discharge into Surface Water Bodies, PSI, Al-Bireh, Palestine, 2010.
  30. G.S. Dheri, M.S. Brar, S.S. Malhi, Heavy-metal concentration of sewage‐contaminated water and its impact on underground water, soil, and crop plants in alluvial soils of northwestern India, Commun. Soil Sci. Plant Anal., 38 (2007) 1353–1370.
  31. Y. Qian, W. Zhang, L. Yu, H. Feng, Metal pollution in coastal sediments, Curr. Pollut. Rep., 1 (2015) 203–219.
  32. X. Lu, Y. Zhang, H. Liu, M. Xing, X. Shao, F. Zhao, X. Li, Q. Liu, D. Yu, X. Yuan, M. Yuan, Influence of early diagenesis on the vertical distribution of metal forms in sediments of Bohai Bay, China, Mar. Pollut. Bull., 88 (2014) 155–161.
  33. R. Khan, M.S. Islam, A.R.M. Tareq, K. Naher, A.R. Islam, M.A. Habib, A.B. Siddique, M.A. Islam, S. Das, B. Rashid, A.K.M. Atique Ullah, M.H. Miah, S.U. Masrura, Md. Bodrud- Doza, M.R. Sarker, A.B.M. Badruzzaman, Distribution, sources and ecological risk of trace elements and polycyclic aromatic hydrocarbons in sediments from a polluted urban river in central Bangladesh, Environ. Nanotechnol. Monit. Manage., 14 (2020) 100318, doi: 10.1016/j.enmm.2020.100318.
  34. A.E. Nemr, A. Khaled, A.E. Sikaily, Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf, Environ. Monit. Assess., 118 (2006) 89–112.
  35. J. Milke, M. Gałczyńska, J. Wróbel, The importance of biological and ecological properties of Phragmites australis (Cav.) Trin. Ex Steud., in phytoremendiation of aquatic ecosystems—the review, Water, 12 (2020) 1770, doi: 10.3390/w12061770.
  36. M.J. Shahid, S. Ali, G. Shabir, M. Siddique, M. Rizwan, M.F. Seleiman, M. Afzal, Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water, Chemosphere, 243 (2020) 125353, doi:10.1016/j.chemosphere.2019.125353.
  37. D. Baldantoni, R. Ligrone, A. Alfani, Macro- and trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy, J. Geochem. Explor., 101 (2009) 166–174.
  38. C. Bragato, H. Brix, M. Malagoli, Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed, Environ. Pollut., 144 (2006) 967–975.
  39. N. Karami, R. Clemente, E. Moreno-Jiménez, N.W. Lepp, L. Beesley, Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass, J. Hazard. Mater., 191 (2011) 41–48.
  40. E. Stoltz, M. Greger, Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environ. Exp. Bot., 47 (2002) 271–280.
  41. T. Sawidis, M. Chettri, G. Zachariadis, J. Stratis, Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece, Ecotoxicol. Environ. Saf., 32 (1995) 73–80.
  42. Y. Ji, P. Vollenweider, M. Lenz, R. Schulin, S. Tandy, Can iron plaque affect Sb(III) and Sb(V) uptake by plants under hydroponic conditions, Environ. Exp. Bot., 148 (2018) 168–175.
  43. L. Windham, J. Weis, P. Weis, Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed), Estuarine Coastal Shelf Sci., 56 (2003) 63–72.
  44. R.L. Chaney, Toxic Element Accumulation in Soils and Crops: Protecting Soil Fertility and Agricultural Food-Chains, B. Bar- Yosef, N.J. Barrow, J. Goldshmid, Eds., Inorganic Contaminants in the Vadose Zone, Ecological Studies (Analysis and Synthesis), Vol. 74, Springer, Berlin, Heidelberg, 1989.
  45. J.H. Peverly, J.M. Surface, T. Wang, Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment, Ecol. Eng., 5 (1995) 21–35.
  46. A. Fairbrother, R. Wenstel, K. Sappington, W. Wood, Framework for metals risk assessment, Ecotoxicol. Environ. Saf., 68 (2007) 145–227.
  47. T. Yeh, C. Chou, C. Pan, Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations, Desalination, 249 (2009) 368–373.
  48. N. Tam, Y. Wong, Retention and distribution of heavy metals in mangrove soils receiving wastewater, Environ. Pollut., 94 (1996) 283–291.
  49. C. Carranza-Álvarez, A.J. Alonso-Castro, M.C. Torre, R.F. Cruz, Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México, Water Air Soil Pollut., 188 (2007) 297–309.
  50. D. Phillips, L. Human, J. Adams, Wetland plants as indicators of heavy metal contamination, Mar. Pollut. Bull., 92 (2015) 227–232.
  51. B.E. Keller, K. Lajtha, S. Cristofor, Trace metal concentrations in the sediments and plants of the Danube Delta, Romania, Wetlands, 18 (1998) 42–50.
  52. A. Samecka-Cymerman, D. Stepien, A.J. Kempers, Efficiency in removing pollutants by constructed wetland purification systems in Poland, J. Toxicol. Environ. Health Part A, 67 (2004) 265–275.
  53. G.D. Laing, A.V. Moortel, W. Moors, P.D. Grauwe, E. Meers, F. Tack, M. Verloo, Factors affecting metal concentrations in reed plants (Phragmites australis) of intertidal marshes in the Scheldt estuary, Ecol. Eng., 35 (2009) 310–318.
  54. E. Lesage, D. Rousseau, E. Meers, F. Tack, N.D. Pauw, Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium, Sci. Total Environ., 380 (2007) 102–115.
  55. S.E. Allen, Chemical Analysis of Ecological Materials, 2nd ed., Blackwell, Oxford, UK, 1989, 368 pp.
  56. J. Vymazal, T. Březinová, Heavy metals in plants in constructed and natural wetlands: concentration, accumulation and seasonality, Water Sci. Technol., 71 (2015) 268–276.
  57. J.S. Bermejo, R. Beltrán, J.G. Ariza, Spatial variations of heavy metals contamination in sediments from Odiel River (Southwest Spain), Environ. Int., 29 (2003) 69–77.
  58. H. Feng, H. Jiang, W. Gao, M.P. Weinstein, Q. Zhang, W. Zhang, Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China, J. Environ. Manage., 92 (2011) 1185–1197.
  59. A.P. Dean, S. Lynch, P. Rowland, B.D. Toft, J.K. Pittman, K.N. White, Natural wetlands are efficient at providing longterm metal remediation of freshwater systems polluted by acid mine drainage, Environ. Sci. Technol., 47 (2013) 12029–12036.