References

  1. D.R. Cullimore, Standard Methods for the Application of BART Testers in Environmental Investigations of Microbiological Activities, Droycon Bioconcepts Inc., Canada, 2013.
  2. K. Daly, R.J. Sharp, A.J. McCarthy, Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria, Microbiology (Reading), 146 (2000) 1693–1705.
  3. Y.J. Chang, A.D. Peacock, P.E. Long, J.R. Stephen, J.P. McKinley, S.J. Macnaughton, A.K. Hussain, A.M. Saxton, D.C. White, Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site, Appl. Environ. Microbiol., 67 (2001) 3149–3160.
  4. G. Muyzer, A.J.M. Stams, The ecology and biotechnology of sulfate-reducing bacteria, Nat. Rev. Microbiol., 6 (2008) 441–454.
  5. J. Guan, L.-P. Xia, L.-Y. Wang, J.-F. Liu, J.-D. Gu, B.-Z. Mu, Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes, Int. Biodeterior. Biodegrad., 76 (2013) 58–66.
  6. S. Khayat, H. Hötzl, S. Geyer, W. Ali, Hydrochemical investigation of water from the Pleistocene wells and springs, Jericho area, Palestine, Hydrogeol. J., 14 (2006) 192–202.
  7. A. Marie, A. Vengosh, Sources of salinity in ground water from Jericho area, Jordan Valley, Groundwater, 39 (2001) 240–248.
  8. S. Khayat, H. Hotzl, S. Geyer, W. Ali, Hydrochemical investigation of water from the Pleistocene wells and springs, Jericho area, Palestine, Hydrogeol. J., 14 (2006) 192–202.
  9. M. Sabieh, Ice Age and Groundwater System Jericho Region, AL-Quds University, 2009 (In Arabic).
  10. S. Khayat, S. Geyer, A. Marei, Tracing the Inorganic Carbon System in the Groundwater From the Lower Jordan Valley Basin (Jericho/Palestine), P. Birkle, Ed., In the Water Rock Interaction XIII (ED.), Taylor and Francis Group, 2010, p. 1008.
  11. S. Khayat, M. Ghanem, A. Tamimi, M. Haddad, Hydrochemistry and Isotope Hydrogeology in the Jericho Area/Palestine, The Water of the Jordan Valley, Springer, Berlin Heidelberg, 2009, pp. 325–348.
  12. K.U. Kjeldsen, A. Loy, T.F. Jakobsen, T.R. Thomsen, M. Wagner, K. Ingvorsen, Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah), FEMS Microbiol. Ecol., 60 (2007) 287–298.
  13. S. Dar, Diversity and Activity of Sulfate-Reducing Bacteria in Sulfidogenic Wastewater Treatment Reactors, 2007.
  14. Z. Jing, Y. Hu, Q. Niu, Y. Liu, Y.-Y. Li, X.C. Wang, UASB performance and electron competition between methaneproducing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate, Bioresour. Technol., 137 (2013) 349–357.
  15. O.V. Karnachuk, I.I. Rusanov, I.A. Panova, M.A. Grigoriev, V.S. Zyusman, E.A. Latygolets, M.K. Kadyrbaev, E.V. Gruzdev, A.V. Beletsky, A.V. Mardanov, N.V. Pimenov, N.V. Ravin, Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility, Sci. Rep., 11 (2021) 10720, doi: 10.1038/s41598-021-90256-w.
  16. W. Zhou, M. Yang, Z. Song, J. Xing, Enhanced sulfate reduction by Citrobacter sp. coated with Fe3O4/SiO2 magnetic nanoparticles, Biotechnol. Bioprocess Eng., 20 (2015) 117–123.
  17. M.J. Filiatrault, K.F. Picardo, H. Ngai, L. Passador, B.H. Iglewski, Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth, Infect. Immun., 74 (2006) 4237–4245.
  18. P. Ambily, M. Jisha, Biodegradation of anionic surfactant, sodium dodecyl sulfate by Pseudomonas aeruginosa MTCC 10311, J. Environ. Biol., 33 (2012) 717–720.
  19. H. Zhang, M. Li, Z. Yang, Y. Sun, J. Yan, D. Chen, Y. Chen, Isolation of a non-traditional sulfate reducing-bacteria Citrobacter freundii sp. and bioremoval of thallium and sulfate, Ecol. Eng., 102 (2017) 397–403.
  20. A. Gittel, M. Mussmann, H. Sass, H. Cypionka, M. Könneke, Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis, Environ. Microbiol., 10 (2008) 2645–2658.
  21. K.U. Kjeldsen, A. Loy, T.F. Jakobsen, T.R. Thomsen, M. Wagner, K. Ingvorsen, Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah), FEMS Microbiol. Ecol., 60 (2007) 287–298.
  22. J. Leloup, H. Fossing, K. Kohls, L. Holmkvist, C. Borowski, B.B. Jørgensen, sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation, Environ. Microbiol., 11 (2009) 1278–1291.
  23. M. Bahr, B.C. Crump, V. Klepac-Ceraj, A. Teske, M.L. Sogin, J.E. Hobbie, Molecular characterization of sulfate-reducing bacteria in a New England salt marsh, Environ. Microbiol., 7 (2005) 1175–1185.
  24. L. Cortás, M. Carreira, A. Costa, Biogenic production of sulfides in water-oil samples and its correlation with the deterioration of storage tanks, Braz. J. Pet. Gas, 6 (2012).
  25. M. Ismail, N. Yahaya, A. Abu Bakar, N.M. Noor, Cultivation of sulfate-reducing bacteria in different media, Malays. J. Civ. Eng., 26 (2014) 456–465.
  26. M. Wagner, A.J. Roger, J.L. Flax, G.A. Brusseau, D.A. Stahl, Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration, J. Bacteriol., 180 (1998) 2975–2982.
  27. J.W. Moreau, R.A. Zierenberg, J.F. Banfield, Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage, Appl. Environ. Microbiol., 76 (2010) 4819–4828.
  28. S.-J. Li, Z.-S. Hua, L.-N. Huang, J. Li, S.-H. Shi, L.-X. Chen, J.-L. Kuang, J. Liu, M. Hu, W.-S. Shu, Microbial communities evolve faster in extreme environments, Sci. Rep., 4 (2014) 6205, doi: 10.1038/srep06205.
  29. R.D. Barrett, H.E. Hoekstra, Molecular spandrels: tests of adaptation at the genetic level, Nat. Rev. Genet., 12 (2011) 767–780.
  30. E.V. Koonin, M.Y. Galperin, Sequence - Evolution - Function: Computational Approaches in Comparative Genomics, Kluwer Academic, Boston, 2003.
  31. L.-p. Yang, X.-h. Zheng, G.-q. Zeng, M.-y. Xu, G.-p. Sun, Isolation and characterization of a sulfate reducing Citrobacter sp. strain SR3, Huan Jing Ke Xue., 31 (2010) 815–820.
  32. K.A. Zarasvand, V.R. Rai, Identification of the traditional and non-traditional sulfate-reducing bacteria associated with corroded ship hull, 3 Biotech, 6 (2016) 1–8.
  33. T. Tralau, S. Vuilleumier, C. Thibault, B.J. Campbell, C. Anthony Hart, M.A. Kertesz, Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa, J. Bacteriol., 189 (2007) 6743–6750.
  34. V. Zadjelovic, M.I. Gibson, C. Dorador, J.A. Christie-Oleza, Genome of Alcanivorax sp. 24: a hydrocarbon degrading bacterium isolated from marine plastic debris, Mar. Genomics, 49 (2020) 100686, doi: 10.1016/j.margen.2019.05.001.
  35. N. Mpongwana, S.K.O. Ntwampe, L. Mekuto, E.A. Akinpelu, S. Dyantyi, Y. Mpentshu, Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions, Water Sci. Technol., 73 (2016) 2168–2175.
  36. E. Darmon, D.R.F. Leach, Bacterial genome instability, Microbiol. Mol. Biol. Rev., 78 (2014) 1–39.
  37. H.J. Krishna, Introduction to Desalination Technologies, Texas Water Development, 2004.