References
- D.R. Cullimore, Standard Methods for the Application of BART
Testers in Environmental Investigations of Microbiological
Activities, Droycon Bioconcepts Inc., Canada, 2013.
- K. Daly, R.J. Sharp, A.J. McCarthy, Development of
oligonucleotide probes and PCR primers for detecting
phylogenetic subgroups of sulfate-reducing bacteria,
Microbiology (Reading), 146 (2000) 1693–1705.
- Y.J. Chang, A.D. Peacock, P.E. Long, J.R. Stephen, J.P. McKinley,
S.J. Macnaughton, A.K. Hussain, A.M. Saxton, D.C. White,
Diversity and characterization of sulfate-reducing bacteria in
groundwater at a uranium mill tailings site, Appl. Environ.
Microbiol., 67 (2001) 3149–3160.
- G. Muyzer, A.J.M. Stams, The ecology and biotechnology of
sulfate-reducing bacteria, Nat. Rev. Microbiol., 6 (2008) 441–454.
- J. Guan, L.-P. Xia, L.-Y. Wang, J.-F. Liu, J.-D. Gu, B.-Z. Mu,
Diversity and distribution of sulfate-reducing bacteria in four
petroleum reservoirs detected by using 16S rRNA and dsrAB
genes, Int. Biodeterior. Biodegrad., 76 (2013) 58–66.
- S. Khayat, H. Hötzl, S. Geyer, W. Ali, Hydrochemical
investigation of water from the Pleistocene wells and springs,
Jericho area, Palestine, Hydrogeol. J., 14 (2006) 192–202.
- A. Marie, A. Vengosh, Sources of salinity in ground water from
Jericho area, Jordan Valley, Groundwater, 39 (2001) 240–248.
- S. Khayat, H. Hotzl, S. Geyer, W. Ali, Hydrochemical
investigation of water from the Pleistocene wells and springs,
Jericho area, Palestine, Hydrogeol. J., 14 (2006) 192–202.
- M. Sabieh, Ice Age and Groundwater System Jericho Region,
AL-Quds University, 2009 (In Arabic).
- S. Khayat, S. Geyer, A. Marei, Tracing the Inorganic Carbon
System in the Groundwater From the Lower Jordan Valley Basin
(Jericho/Palestine), P. Birkle, Ed., In the Water Rock Interaction
XIII (ED.), Taylor and Francis Group, 2010, p. 1008.
- S. Khayat, M. Ghanem, A. Tamimi, M. Haddad, Hydrochemistry
and Isotope Hydrogeology in the Jericho Area/Palestine, The
Water of the Jordan Valley, Springer, Berlin Heidelberg, 2009,
pp. 325–348.
- K.U. Kjeldsen, A. Loy, T.F. Jakobsen, T.R. Thomsen, M. Wagner,
K. Ingvorsen, Diversity of sulfate-reducing bacteria from
an extreme hypersaline sediment, Great Salt Lake (Utah),
FEMS Microbiol. Ecol., 60 (2007) 287–298.
- S. Dar, Diversity and Activity of Sulfate-Reducing Bacteria in
Sulfidogenic Wastewater Treatment Reactors, 2007.
- Z. Jing, Y. Hu, Q. Niu, Y. Liu, Y.-Y. Li, X.C. Wang, UASB
performance and electron competition between methaneproducing
archaea and sulfate-reducing bacteria in treating
sulfate-rich wastewater containing ethanol and acetate,
Bioresour. Technol., 137 (2013) 349–357.
- O.V. Karnachuk, I.I. Rusanov, I.A. Panova, M.A. Grigoriev,
V.S. Zyusman, E.A. Latygolets, M.K. Kadyrbaev, E.V. Gruzdev,
A.V. Beletsky, A.V. Mardanov, N.V. Pimenov, N.V. Ravin,
Microbial sulfate reduction by Desulfovibrio is an important
source of hydrogen sulfide from a large swine finishing facility,
Sci. Rep., 11 (2021) 10720, doi: 10.1038/s41598-021-90256-w.
- W. Zhou, M. Yang, Z. Song, J. Xing, Enhanced sulfate reduction
by Citrobacter sp. coated with Fe3O4/SiO2 magnetic nanoparticles,
Biotechnol. Bioprocess Eng., 20 (2015) 117–123.
- M.J. Filiatrault, K.F. Picardo, H. Ngai, L. Passador, B.H. Iglewski,
Identification of Pseudomonas aeruginosa genes involved in
virulence and anaerobic growth, Infect. Immun., 74 (2006)
4237–4245.
- P. Ambily, M. Jisha, Biodegradation of anionic surfactant,
sodium dodecyl sulfate by Pseudomonas aeruginosa MTCC
10311, J. Environ. Biol., 33 (2012) 717–720.
- H. Zhang, M. Li, Z. Yang, Y. Sun, J. Yan, D. Chen, Y. Chen,
Isolation of a non-traditional sulfate reducing-bacteria
Citrobacter freundii sp. and bioremoval of thallium and sulfate,
Ecol. Eng., 102 (2017) 397–403.
- A. Gittel, M. Mussmann, H. Sass, H. Cypionka, M. Könneke,
Identity and abundance of active sulfate-reducing bacteria in
deep tidal flat sediments determined by directed cultivation
and CARD-FISH analysis, Environ. Microbiol., 10 (2008)
2645–2658.
- K.U. Kjeldsen, A. Loy, T.F. Jakobsen, T.R. Thomsen, M. Wagner,
K. Ingvorsen, Diversity of sulfate-reducing bacteria from
an extreme hypersaline sediment, Great Salt Lake (Utah),
FEMS Microbiol. Ecol., 60 (2007) 287–298.
- J. Leloup, H. Fossing, K. Kohls, L. Holmkvist, C. Borowski,
B.B. Jørgensen, sulfate-reducing bacteria in marine sediment
(Aarhus Bay, Denmark): abundance and diversity related to
geochemical zonation, Environ. Microbiol., 11 (2009) 1278–1291.
- M. Bahr, B.C. Crump, V. Klepac-Ceraj, A. Teske, M.L. Sogin,
J.E. Hobbie, Molecular characterization of sulfate-reducing
bacteria in a New England salt marsh, Environ. Microbiol.,
7 (2005) 1175–1185.
- L. Cortás, M. Carreira, A. Costa, Biogenic production of sulfides
in water-oil samples and its correlation with the deterioration of
storage tanks, Braz. J. Pet. Gas, 6 (2012).
- M. Ismail, N. Yahaya, A. Abu Bakar, N.M. Noor, Cultivation
of sulfate-reducing bacteria in different media, Malays. J. Civ.
Eng., 26 (2014) 456–465.
- M. Wagner, A.J. Roger, J.L. Flax, G.A. Brusseau, D.A. Stahl,
Phylogeny of dissimilatory sulfite reductases supports an early
origin of sulfate respiration, J. Bacteriol., 180 (1998) 2975–2982.
- J.W. Moreau, R.A. Zierenberg, J.F. Banfield, Diversity of
dissimilatory sulfite reductase genes (dsrAB) in a salt marsh
impacted by long-term acid mine drainage, Appl. Environ.
Microbiol., 76 (2010) 4819–4828.
- S.-J. Li, Z.-S. Hua, L.-N. Huang, J. Li, S.-H. Shi, L.-X. Chen,
J.-L. Kuang, J. Liu, M. Hu, W.-S. Shu, Microbial communities
evolve faster in extreme environments, Sci. Rep., 4 (2014) 6205,
doi: 10.1038/srep06205.
- R.D. Barrett, H.E. Hoekstra, Molecular spandrels: tests of
adaptation at the genetic level, Nat. Rev. Genet., 12 (2011)
767–780.
- E.V. Koonin, M.Y. Galperin, Sequence - Evolution - Function:
Computational Approaches in Comparative Genomics, Kluwer
Academic, Boston, 2003.
- L.-p. Yang, X.-h. Zheng, G.-q. Zeng, M.-y. Xu, G.-p. Sun,
Isolation and characterization of a sulfate reducing Citrobacter
sp. strain SR3, Huan Jing Ke Xue., 31 (2010) 815–820.
- K.A. Zarasvand, V.R. Rai, Identification of the traditional and
non-traditional sulfate-reducing bacteria associated with
corroded ship hull, 3 Biotech, 6 (2016) 1–8.
- T. Tralau, S. Vuilleumier, C. Thibault, B.J. Campbell, C. Anthony
Hart, M.A. Kertesz, Transcriptomic analysis of the sulfate
starvation response of Pseudomonas aeruginosa, J. Bacteriol.,
189 (2007) 6743–6750.
- V. Zadjelovic, M.I. Gibson, C. Dorador, J.A. Christie-Oleza,
Genome of Alcanivorax sp. 24: a hydrocarbon degrading
bacterium isolated from marine plastic debris, Mar. Genomics,
49 (2020) 100686, doi: 10.1016/j.margen.2019.05.001.
- N. Mpongwana, S.K.O. Ntwampe, L. Mekuto, E.A. Akinpelu,
S. Dyantyi, Y. Mpentshu, Isolation of high-salinity-tolerant
bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for
nitrification and aerobic denitrification under cyanogenic
conditions, Water Sci. Technol., 73 (2016) 2168–2175.
- E. Darmon, D.R.F. Leach, Bacterial genome instability,
Microbiol. Mol. Biol. Rev., 78 (2014) 1–39.
- H.J. Krishna, Introduction to Desalination Technologies, Texas
Water Development, 2004.