References

  1. S.M. Ashekuzzaman, P. Forrestal, K. Richards, O. Fenton, Dairy industry derived wastewater treatment sludge: generation, type and characterization of nutrients and metals for agricultural reuse, J. Cleaner Prod., 230 (2019) 1266–1275.
  2. B.S. Shete, N. Shinkar, Comparative study of various treatments for dairy industry wastewater, IOSR J. Eng., 3 (2013) 42–47.
  3. S.Q. Aziz, S.M. Ali, Characterization of municipal and dairy wastewaters with 30 quality parameters and potential wastewater treatment by biological trickling filters, Int. J. Green Energy, 14 (2017) 1156–1162.
  4. A.C. Oliveira, A. Barata, A.P. Batista, L. Gouveia, Scenedesmus obliquus in poultry wastewater bioremediation, Environ. Technol., 40 (2018) 1–10.
  5. H. Sozer, H. Sozen, Evaluating the capacity of a building’s waste and the potential for savings using the life cycle assessment methodology, WIT Trans. Ecol. Environ., 231 (2019) 159–170.
  6. I. Tunile, A. Srinivasan, P. Liao, K. Lo, Microwave enhanced advanced oxidation treatment of dairy manure, J. Environ. Sci. Health., Part B, 53 (2018) 1–7.
  7. L. Dvořák, M. Gómez, J. Dolina, A. Černín, Anaerobic membrane bioreactors—a mini review with emphasis on industrial wastewater treatment: applications, limitations and perspectives, Desal. Water Treat., 57 (2016) 19062–19076.
  8. H. Bouwer, Urban and agricultural competition for water, and water reuse, Int. J. Water Resour. Dev., 9 (1993) 13–25.
  9. G.J. Joshiba, P.S. Kumar, C.C. Femina, E. Jayashree, R. Racchana, S. Sivanesan, Critical review on biological treatment strategies of dairy wastewater, Desal. Water Treat., 160 (2019) 94–109.
  10. M. Al-Jabari, H. Dweik, N. Zahdeh, N. Iqefan, Reducing organic pollution of wastewater from milk processing industry by adsorption on marlstone particles, Int. J. Thermal Environ. Eng., 15 (2015) 57–61.
  11. N.M. Al-Ananzeh, Treatment of wastewater from a dairy plant by adsorption using synthesized copper oxide nanoparticles: kinetics and isotherms modeling optimization, Water Sci. Technol., 83 (2021) 1591–1604.
  12. J.P. Kushwaha, V.C. Srivastava, I.D. Mall, Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash: parametric, kinetic and equilibrium modeling, disposal studies, Bioresour. Technol., 101 (2010) 3474–3483.
  13. K. Murali, P. Karuppiah, M. Nithish, S.S. Kumar, V.S. Raja, COD reduction using low cost biosorbent as part of cleaner production, Int. J. Sci. Res. Publ., 3 (2013) 1–3.
  14. T. Ghezzehei, D. Sarkhot, A. Berhe, Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties, Solid Earth, 5 (2014) 953–962.
  15. S.S. Karale, M.M. Suryavanshi, Dairy wastewater treatment using coconut shell activated carbon and laterite as low cost adsorbents, Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev., 4 (2014) 9–14.
  16. Y. Wang, D.C. Tsang, W.E. Olds, P.A. Weber, Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater, Environ. Technol., 34 (2013) 3177–3182.
  17. USAID, Current Status of Industrial Sector in Palestine, 2009.
  18. L. Clesceri, A. Greenberg, A. Eaton, Standard Methods for The Examination of Water and Wastewater, American Water Works Association, 1999.
  19. P. Dhall, T.O. Siddiqi, A. Ahmad, R. Kumar, A. Kumar, Restructuring BOD: COD ratio of dairy milk industrial wastewaters in BOD analysis by formulating a specific microbial seed, Sci. World J., (2012) 105712–105712.
  20. M.F. Shkoukani, Development of an Environmental Management System Using Cleaner Production in Palestinian Dairy Industries, Birzeit University, 2008.
  21. FAO, Livestock Sector Strategy 2015–2019, Food and Agriculture Organization of the United Nations, 2015.
  22. M. Al-Jabari, N. Zahdeh, N. Iqefan, H. Dweik, Technical feasibility of treating dairy wastewater with natural low cost adsorbents, Int. J. Environ. Water, 4 (2015) 31–39.