References

  1. H. Turral, J. Burke, J.-M. Faurès, Climate Change, Water and Food Security, Food and Agriculture Organization of the United Nations (FAO), FAO Publications, Rome, Italy, 2011.
  2. The World Bank, Water Resources Management, The World Bank Group, Washington, United States, 2017.
  3. D.J. Greenwood, K. Zhang, H. Hilton, A.J. Thompson, Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology, J. Agric. Sci., 148 (2010), doi:10.1017/S0021859609990487.
  4. F. Roudi-Fahimi, L. Creel, R.-M. De Souza, Finding the Balance: Population and Water Scarcity in the Middle East and North Africa, Population Reference Bureau, Washington, D.C., 2002.
  5. S. Zafar, Water Scarcity in MENA, EcoMENA Echoing Sustainability in MENA, EcoMENA, Salman Zafar, Qatar, May 2014.
  6. N. Mizyed, Impacts of climate change on water resources availability and agricultural water demand in the West Bank, Water Resour. Manage., 23 (2009) 2015–2029.
  7. The World Bank, West Bank and Gaza – Assessment of Restrictions on Palestinian Water Sector Development, The World Bank Group, Washington, United States, 2009.
  8. J. Issac, F. Al-Juneidi, W. Sabbah, A. Amriyeh, Efficiency of Irrigated Agriculture in the West Bank, Applied Research Institute, Jerusalem, 2001.
  9. L.A. Richards, Capillary conduction of liquids through porous mediums, Physics, 318 (1931), doi:10.1063/1.1745010.
  10. M.M. Kandelous, J. Šimůnek, Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using Hydrus-2D, Agric. Water Manage., 97 (2010) 1070–1076.
  11. J. Šimůnek, Models of Water Flow and Solute Transport in the Unsaturated Zone, M.G. Anderson, Ed., Encyclopedia of Hydrological Sciences, John Wiley & Sons, Ltd., JIRKA SIMUNEK, University of California, California, United States, 2006.
  12. J. Šimůnek, M. Šejna, M.Th. van Genuchten, New features of version 3 of the HYDRUS (2D/3D) computer software package, J. Hydrol. Hydromech., 66 (2018) 133–142.
  13. D.E. Radcliffe, J. Simunek, Soil Physics with HYDRUS: Modeling and Applications, CRC Press, David E. Radcliffe, Jiri Simunek, Boca Raton – Florida, United States, 2018.
  14. J. Šimůnek, M.Th. van Genuchten, M. Šejna, The HYDRUS Software Package for Simulating the Two- and Three- Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual, PC Progress, Prague, Czech Republic, 2012.
  15. M. Han, C. Zhao, G. Feng, Y. Yan, Y. Sheng, Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using Hydrus-2D, Water, 7 (2015) 2622–2640.
  16. A. Mante, R.S. Ranjan, HYDRUS (2D/3D) simulation of water flow through sandy loam soil under potato cultivation in Southern Manitoba, Can. Biosyst. Eng., (2017), doi: 10.7451/CBE.2017.59.1.9.
  17. P. Yao, X. Dong, A. Hu, Using Hydrus-2D Simulate Soil Water Dynamic in Jujube Root Zone Under Drip Irrigation, 2011 International Symposium on Water Resource and Environmental Protection, IEEE, Xi’an, China, 2011, pp. 684–688.
  18. H. Ghazouani, D. Autovino, G. Rallo, B. Douh, G. Provenzano, Using Hydrus-2D model to assess the optimal drip lateral depth for eggplant crop in a sandy loam soil of central Tunisia, Ital. J. Agrometeorol., 1 (2016) 47–58.
  19. H. Abu-Qaoud, Date Palm Status and Perspective in Palestine, J. Al-Khayri, S. Jain, D. Johnson, Eds., Date Palm Genetic Resources and Utilization, Springer, Dordrecht, 2015, pp. 423–439.
  20. A.F.N. Abd Rabou, E.S. Radwan, The state of the date palm (Phoenix dactylifera) in the Gaza strip, Palestine: a questionnaire-based study, IUG J. Nat. Stud., 26 (2018).
  21. J. Trottier, N. Leblond, Y. Garb, The political role of date palm trees in the Jordan Valley: the transformation of Palestinian land and water tenure in agriculture made invisible by epistemic violence, Environ. Plann. E: Nat. Space, 3 (2020) 114–140, doi: 10.1177/2514848619876546.
  22. N. Al-Khatib, J.A.H. Shoqeir, G. Özerol, L. Majaj, Governing the reuse of treated wastewater in irrigation: the case study of Jericho, Palestine, Int. J. Global Environ. Issues, 16 (2017) 135–148.
  23. A.A. Hanieh, A. Hasan, M. Assi, Date palm trees supply chain and sustainable model, J. Cleaner Prod., 258 (2020) 120951, doi: 10.1016/j.jclepro.2020.120951.
  24. Palestine Economy Portal, Water Shortage Threatens Date Palm Sector in Palestine, Palestine Economy Portal, Palestine, 2016.
  25. W.M. Khalilia, Assessment of Lead, Zinc and Cadmium Contamination in the Fruit of Palestinian Date Palm Cultivars Growing at Jericho Governorate, Assessment, Forensic Science Department, Al-Istiqlal University, Jericho, Palestine, 2020.
  26. J.M.H. Ighbareyeh, Bioclimate of Jericho in Palestine, Palestine Tech. Univ. Res. J., 7 (2019) 1–7.
  27. J. Trottier, Palestinian Water Management – Policies and Pitfalls, Palestinian Academic Society for the Study of International Affairs, Jerusalem, 2019.
  28. B.M. Das, Hydrometer Analysis, Soil Mechanics Laboratory Manual, 6th ed., Oxford University Press, Oxford, New York, 2002.
  29. User Manual for the Profile Probe Type PR22016, Delta-T Devices Ltd., Company, Cambridge, UK.
  30. B.M. Das, Sieve Analysis, Soil Mechanics Laboratory Manual, 6th ed., Oxford University Press, Oxford, New York, 2002.
  31. Delta-T Devices Ltd., User Manual for the Profile Probe Type PR22016, Delta-T Devices Ltd., Company, Cambridge, UK.
  32. M.G. Schaap, F.J. Leij, M.Th. van Genuchten, Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251 (2001) 163–176.
  33. J. Šimůnek, M.Th. van Genuchten, M. Šejna, The HYDRUS Software Package for Simulating the Two- and Three- Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual Version 30, PC Progress, Prague, Czech Republic, 2018.
  34. M. Mohammed, K. Riad, N. Alqahtani, Efficient IoT-based control for a smart subsurface irrigation system to enhance irrigation management of date palm, Sensors, 21 (2021) 3942, doi: 10.3390/s21123942.
  35. A.I. Ekhmaj, M.S.M. Amin, A.H. Almdny, A.M. Abdulaziz, W. Aimrun, Simulation of Soil Water Movement in Sandy Soil under a Prairie Field with Hydrus _2D Model, Vol. 1, The 2nd International Conference on Water Resources and Arid Environments, The King Fahd Cultural Center, Riyadh, Saudi Arabia, 2006, pp. 1–16.
  36. J. Šimůnek, M. Šejna, H. Saito, M. Sakai, M.Th. van Genuchten, The HYDRUS-1D Software Package for Simulating the One- Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Department of Environmental Sciences, University of California Riverside, Riverside, California, 1998.
  37. M.Th. van Genuchten, J. Simunek, M.G. Schaap, T.H. Skaggs, Unsaturated Zone Parameter Estimation Using The HYDRUS And Rosetta Software Packages, Multimedia Environmental Models; Nuclear Regulatory Commission, Rockville, MD, USA, 2003, p. 41.
  38. R.A. Feddes, P. Kowalik, H. Zaradny, Simulation of Field Water Use and Crop Yield, Simul. Monogr PUDOC, Wageningen, 1978.
  39. J.A. Vrugt, J.W. Hopmans, J. Šimunek, Calibration of a twodimensional root water uptake model, Soil Sci. Soc. Am. J., 65 (2001) 1027–1037.
  40. A. Zaid, P.F. de Wet, Chapter I: Botanical and Systematic Description of the Date Palm, Federal Agriculture Organization Plant Production and Protection, Italy, Rome, 2002. Available at http://www.fao.org/docrep/006.Y4360E/y4360e05.htm (Accessed 31 Mar. 2018).
  41. D.G. Mayer, D.G. Butler, Statistical validation, Ecol. Modell., 68 (1993) 21–32.
  42. Y.G. Motovilov, L. Gottschalk, K. Engeland, A. Rodhe, Validation of a distributed hydrological model against spatial observations, Agric. For. Meteorol., 98 (1999) 257–277.
  43. P. Krause, D.P. Boyle, F. Bäse, Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5 (2005) 89–97.
  44. D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, T.L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 50 (2007) 885–900.
  45. J. Wang, S. Gong, D. Xu, S. Juan, J. Mu, Numerical simulations and validation of water flow and heat transport in a subsurface drip irrigation system using HYDRUS‐2D, Irrig. Drain., 62 (2013) 97–106.
  46. A.A. Salehi, M. Navabian, M.E. Varaki, N. Pirmoradian, Evaluation of Hydrus-2D model to simulate the loss of nitrate in subsurface controlled drainage in a physical model scale of paddy fields, Paddy Water Environ., 15 (2017) 433–442.
  47. M.J. Hall, How well does your model fit the data?, J. Hydroinf., 3 (2001) 49–55.
  48. N.T. Mazahrih, Y. Al-Zubi, H. Ghnaim, L. Lababdeh, M. Ghananeem, H.A. Ahmadeh, Determination actual evapotranspiration and crop coefficients of date palm trees (Phoenix dactylifera L.) in the Jordan Valley, American-Eurasian J. Agric. Environ. Sci., 12 (2012) 434–443.
  49. M. English, S.N. Raja, Perspectives on deficit irrigation, Agric. Water Manage., 32 (1996) 1–14.