References

  1. M. Lutyński, P. Sakiewicz, S. Lutyńska, Characterization of diatomaceous earth and halloysite resources of Poland, Minerals, 9 (2019) 670, doi: 10.3390/min9110670.
  2. X. Gong, W. Tian, L. Wang, J. Bai, K. Qiao, J. Zhao, Biological regeneration of brewery spent diatomite and its reuse in basic dye and chromium(III) ions removal, Process Saf. Environ. Prot., 128 (2019) 353–361.
  3. E.E. ElSayed, Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study), Water Sci., 32 (2018) 32–43.
  4. Z. Ren, Y. He, R. Zheng, Z. Guo, H. Gao, X. He, F. Wu, X. Ji, The preparation and characterization of calcined diatomite with high adsorption properties by CaO hydrothermal activation, Colloids Surf., A, 636 (2022) 128134, doi: 10.1016/j.colsurfa.2021.128134.
  5. G. Sriram, M. Kigga, U.T. Uthappa, R.M. Rego, V. Thendral, T. Kumeria, H.-Y. Jung, M.D. Kurkuri, Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: a review, Adv. Colloid Interface Sci., 282 (2020) 102198, doi: 10.1016/j.cis.2020.102198.
  6. A.F.D. de Namor, A. El Gamouz, S. Frangie, V. Martinez, L. Valiente, O.A. Webb, Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water, J. Hazard. Mater., 241 (2012) 14–31.
  7. J. Du, B. Zhang, J. Li, B. Lai, Decontamination of heavy metal complexes by advanced oxidation processes: a review, Chin. Chem. Lett., 31 (2020) 2575–2582.
  8. Z. Liao, Z. Zhao, J. Zhu, H. Chen, D. Meng, Complexing characteristics between Cu(II) ions and dissolved organic matter in combined sewer overflows: implications for the removal of heavy metals by enhanced coagulation, Chemosphere, 265 (2021) 129023, doi: 10.1016/j.chemosphere.2020.129023.
  9. M. Peydayesh, T. Mohammadi, S.K. Nikouzad, A positively charged composite loose nanofiltration membrane for water purification from heavy metals, J. Membr. Sci., 611 (2020) 118205, doi:10.1016/j.memsci.2020.118205.
  10. Q. Yang, Y. Xie, B. Zhu, Y. Zeng, H. Zhou, P. Ai, G. Chen, Positively charged PVC ultrafiltration membrane via micellar enhanced ultrafiltration for removing trace heavy metal cations, J. Water Process Eng., 46 (2022) 102552, doi: 10.1016/j. jwpe.2021.102552.
  11. T.M. Shen, H. Xu, Y. Miao, L.L. Ma, N.C. Chen, Q.L. Xie, Study on the adsorption process of Cd(II) by
    Mn-diatomite modified adsorbent, Mater. Lett., 300 (2021) 130087, doi: 10.1016/j. matlet.2021.130087.
  12. H. Memedi, A.A. Reka, S. Kuvendziev, K. Atkovska, M. Garai, M. Marinkovski, B. Pavlovski, K. Lisichkov,
    Chapter 3 – Adsorption of Cr(VI) Ions From Aqueous Solutions by Diatomite and Clayey Diatomite, S. Kumar, M.Z. Hashmi, Eds., Biological Approaches to Controlling Pollutants: Advances in Pollution Research, Woodhead Publishing, 2022, pp. 29–48. Available at doi:10.1016/B978-0-12-824316-9.00002-1
  13. A.A. Sharipova, S.B. Aidarova, N.Y. Bekturganova, A. Tleuova, A.M. Kerimkulova, O. Yessimova, T. Kairaliyeva,
    O. Lygina, S. Lyubchik, R. Miller, Triclosan adsorption from model system by mineral sorbent diatomite, Colloids Surf., A, 532 (2017) 97–101.
  14. M. Hadri, Z. Chaouki, K. Draoui, M. Nawdali, A. Barhoun, H. Valdes, N. Drouiche, H. Zaitan, Adsorption of a cationic dye from aqueous solution using low-cost Moroccan diatomite: adsorption equilibrium, kinetic and thermodynamic studies, Desal. Water Treat., 75 (2017) 213–224.
  15. E. Gokirmak Sogut, N. Caliskan, Removal of lead, copper and cadmium ions from aqueous solution using raw and thermally modified diatomite, Desal. Water Treat., 58 (2017) 154–167.
  16. A. Marszałek, G. Kamińska, N. Fathy Abdel Salam, Simultaneous adsorption of organic and inorganic micropollutants from rainwater by bentonite and bentonite-carbon nanotubes composites, J. Water Process Eng., 46 (2022) 102550, doi: 10.1016/j.jwpe.2021.102550.
  17. I. Cacciotti, M. Rinaldi, J. Fabbrizi, F. Nanni, Innovative polyetherimide and diatomite based composites: influence of the diatomite kind and treatment, J. Mater. Res. Technol., 8 (2019) 1737–1745.
  18. S. Thakur, A. Verma, P. Raizada, O. Gunduz, D. Janas, W.F. Alsanie, F. Scarpa, V.K. Thakur, Bentonite-based sodium alginate/dextrin cross-linked poly(acrylic acid) hydrogel nanohybrids for facile removal of paraquat herbicide from aqueous solutions, Chemosphere, 291 (2022) 133002, doi:10.1016/j.chemosphere.2021.133002.
  19. M. Kuczajowska-Zadrożna, U. Filipkowska, T. Jóźwiak, Adsorption of Cu(II) and Cd(II) from aqueous solutions by chitosan immobilized in alginate beads, J. Environ. Chem. Eng., 8 (2020) 103878, doi:10.1016/j.jece.2020.103878.
  20. S. Mnasri-Ghnimi, N. Frini-Srasra, Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, Appl. Clay Sci., 179 (2019) 105151, doi: 10.1016/j. clay.2019.105151.
  21. P.E. Dim, L.S. Mustapha, M. Termtanun, J.O. Okafor, Adsorption of chromium(VI) and iron(III) ions onto acid-modified kaolinite: isotherm, kinetics and thermodynamics studies, Arabian J. Chem., 14 (2021) 103064, doi:10.1016/j.arabjc.2021.103064
  22. M. Bilgin, Ş. Tulun, Use of diatomite for the removal of lead ions from water: thermodynamics and kinetics, Biotechnol. Biotechnol. Equip., 29 (2015) 696–704.
  23. Z.A. Sutirman, M.M. Sanagi, W.I. Wan Aini, Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: a review, Int. J. Biol. Macromol., 174 (2021) 216–228.
  24. A.K. Thakur, M. Kumar, Efficacy of green alginate beads for multi-metal removal from aqueous solution, Case Stud. Chem. Environ. Eng., 3 (2021) 100100, doi: 10.1016/j.cscee.2021.100100.
  25. R.R. Pawar, L.P.G. Ingole, LS. Lee, Use of activated bentonitealginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment, Int. J. Biol. Macromol., 164 (2020) 3145–3154.
  26. H. Zhao, X. Ouyang, L. Yang, Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber–sodium alginate hydrogel beads, J. Mol. Liq., 324 (2021) 115122, doi:10.1016/j.molliq.2020.115122.
  27. A.A. Alqadami, M.A. Khan, M.R. Siddiqui, Z.A. Alothman, S. Sumbul, A facile approach to develop industrial waste encapsulated cryogenic alginate beads to sequester toxic bivalent heavy metals, J. King Saud Univ. – Sci., 32 (2020) 1444–1450.
  28. S. Fan, J. Zhou, Y. Zhang, Z. Feng, H. Hu, Z. Huang, Y. Qin, Preparation of sugarcane bagasse succinate/alginate porous gel beads via a self-assembly strategy: improving the structural stability and adsorption efficiency for heavy metal ions, Bioresour. Technol., 306 (2020) 123128, doi: 10.1016/j.biortech.2020.123128.
  29. H. Huang, Q. Yang, L. Zhang, C. Huang, Y. Liang, Polyacrylamide modified kaolin enhances adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions, Chem. Eng. Res. Des., 180 (2022) 296–305.
  30. W.S. Tan, A.S.Y. Ting, Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu(II) removal from aqueous solution, Bioresour. Technol., 60 (2014) 115–118.
  31. X. Tao, S. Wang, Z. Li, S. Zhou, Green synthesis of network nanostructured calcium alginate hydrogel and its removal performance of Cd2+ and Cu2+ ions, Mater. Chem. Phys., 258 (2021) 123931, doi: 10.1016/j.matchemphys.2020.123931.
  32. H. Zhang, A.M. Omer, Z. Hu, L. Yang, Ch. Ji, X. Ouyang, Fabrication of magnetic bentonite/carboxymethyl chitosan/ sodium alginate hydrogel beads for Cu(II) adsorption, Int. J. Biol. Macromol., 135 (2019) 490–500.
  33. X. Xu, X. Ouyang, L. Yang, Adsorption of Pb(II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads, J. Mol. Liq., 322 (202) 114523, doi:10.1016/j.molliq.2020.114523.
  34. I. Ayouch, I. Barrak, Z. Kassab, M. El Achaby, A. Barhoun, K. Draoui, Improved recovery of cadmium from aqueous medium by alginate composite beads filled by bentonite and phosphate washing sludge, Colloids Surf., A, 604 (2020) 125305, doi: 10.1016/j.colsurfa.2020.125305.