References
- M. Brañez, R. Gutiérrez, R. Pérez, C. Uribe, P. Valle, Pollution
of aquatic environments generated by textile industry, Campus,
23 (2018) 129–144.
- B.J. Brüschweiler, C. Merlot, Azo dyes in clothing textiles can be
cleaved into a series of mutagenic aromatic amines which are
not regulated yet, Regul. Toxicol. Pharm., 88 (2017) 214–226.
- K. Golka, S. Kopps, Z.W. Myslak, Carcinogenicity of azo
colorants: influence of solubility and bioavailability, Toxicol.
Lett., 151 (2004) 203–210.
- S. Samsami, M. Mohamadizaniani, M.-H. Sarrafzadeh,
E.R. Rene, M. Firoozbahr, Recent advances in the treatment of
dye-containing wastewater from textile industries: overview
and perspectives, Process Saf. Environ. Prot., 143 (2020) 138–163.
- K. Paździor, L. Bilińska, S. Ledakowicz, A review of the existing
and emerging technologies in the combination of AOPs and
biological processes in industrial textile wastewater treatment,
Chem. Eng. J., 376 (2018) 1–95.
- M.C. Collivignarelli, A. Abbà, M. Carnevale Miino, S. Damiani,
Treatments for color removal from wastewater: state of the art,
J. Environ. Manage., 236 (2019) 727–745.
- O. Sahu, B. Mazumdar, P.K. Chaudhari, Treatment of
wastewater by electrocoagulation: a review, Environ. Sci. Pollut.
Res., 21 (2014) 2397–2413.
- Z. Al-Qodah, M. Al-Shannag, Heavy metal ions removal
from wastewater using electrocoagulation processes:
a comprehensive review, Sep. Sci. Technol., 52 (2017) 1–28.
- A.M. Abeer, E.M. Ahmed, Electro-coagulation for Textile
Dyes Removal, A. El Nemr, Ed., Non-Conventional Textile
Wastewater Treatment, Nova Science Publishers, Inc., 2012,
pp. 161–204.
- M. Mousazadeh, Z. Naghdali, Z. Al-Qodah, S.M. Alizadeh,
E.K. Niaragh, S. Malekmohammadi, P.V. Nidheesh,
E.P.L. Roberts, M. Sillanpää, M.M. Emamjomeh, A systematic
diagnosis of state of the art in the use of electrocoagulation as
a sustainable technology for pollutant treatment: an updated
review, Sustainable Energy Technol. Assess., 47 (2021)
2213–1388.
- L. Bilińska, K. Blus, M. Gmurek, S. Ledakowicz, Coupling of
electrocoagulation and ozone treatment for textile wastewater
reuse, Chem. Eng. J., 358 (2019) 992–100.
- G. Roa-Morales, C. Barrera-Díaz, P. Balderas-Hernández,
F. Zaldumbide-Ortiz, H. Reyes, B. Bilyeu, Removal of color
and chemical oxygen demand using a coupled coagulationelectrocoagulation-
ozone treatment of industrial wastewater
that contains offset printing dyes, J. Mexican Chem. Soc.,
58 (2014) 362–368.
- E. Hu, S. Shang, K-L. Chiu, Removal of reactive dyes in
textile effluents by catalytic ozonation pursuing on-site
effluent recycling, Molecules, 24 (2019) 2755, doi: 10.3390/
molecules24152755.
- K. Dunn, Process Improvement Using Data, Version: Release
b72e39, 26 January 2018.
- J.T. Phiri, H. Pak, J. We, S. Oh, Evaluation of Pb, Mg, Al, Zn,
and Cu as electrode materials in the electrocoagulation of
microalgae, Processes, 9 (2021) 1769, doi: 10.3390/pr9101769.
- V. Ya, N. Martin, K.H. Choo, Y.H. Chou, S.J. Lee, N.C. Le, C.W.
Li, High-pressure electrocoagulation system with periodic air
replenishment for efficient dye wastewater treatment: reaction
dynamics and cost evaluation, J. Cleaner Prod., 213 (2019)
1127–1134.