References
- M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal
of hexavalent chromium-contaminated water and wastewater:
a review, Water Air Soil Pollut., 200 (2009) 59–77.
- Y. Li, Q. Zhou, B. Ren, J. Luo, J. Yuan, X. Ding, H. Bian, X. Yao,
Trends and health risks of dissolved heavy metal pollution in
global river and lake water from 1970 to 2017, Rev. Environ.
Contam. Toxicol., 251 (2020) 1–24.
- D.J. Paustenbach, B.L. Finley, F.S. Mowat, B.D. Kerger, Human
health risk and exposure assessment of chromium(VI) in tap
water, J. Toxicol. Environ. Health Part A, 66 (2001) 1295–1339.
- D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman, C. Mabuni,
A critical assessment of chromium in the environment,
Crit. Rev. Env. Sci. Technol., 29 (1999) 1–46.
- G. Choppala, N. Bolan, J.H. Park, Chapter Two – Chromium
Contamination and Its Risk Management in Complex
Environmental Settings, In: Advances in Agronomy,
Vol. 120, 2013, pp. 129–172.
- D.A. Eastmond, J.T. MacGregor, R.S. Slesinski, Trivalent
chromium: assessing the genotoxic risk of an essential trace
element and widely used human and animal nutritional
supplement, Crit. Rev. Toxicol., 38 (2008) 173–190.
- D. Pradhan, L.B. Sukla, M. Sawyer, P.K.S.M. Rahman, Recent
bioreduction of hexavalent chromium in wastewater treatment:
a review, J. Ind. Eng. Chem., 55 (2017) 1–20.
- K. Zhu, Y. Duan, F. Wang, P. Gao, H. Jia, C. Ma, C. Wang, Silane-modified
halloysite/Fe3O4 nanocomposites: simultaneous
removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on
Sb(V) adsorption, Chem. Eng. J., 311 (2017) 236–246.
- S. Rengaraj, K.H. Yeon, S.H. Moon, Removal of chromium from
water and wastewater by ion exchange resins, J. Hazard. Mater.,
87 (2001) 273–287.
- V.K. Gupta, S. Agarwal, T.A. Saleh, Chromium removal
by combining the magnetic properties of iron oxide with
adsorption properties of carbon nanotubes, Water Res.,
45 (2011) 2207–2212.
- D. Mamais, C. Noutsopoulos, L. Kavallaris, E. Nyktari,
A. Kaldis, E. Panousi, N. George, A. Kornilia, M. Nasioka,
Biological groundwater treatment for chromium removal
at low hexavalent chromium concentrations, Chemosphere,
152 (2016) 238–244.
- Q. Zhou, Y. Liu, T. Li, H. Zhao, S.A. Daniel, W. Liu, O.K. Kurt,
Cadmium adsorption to clay-microbe aggregates: implications
for marine heavy metals cycling, Geochim. Cosmochim. Acta,
290 (2020) 124–136.
- M. Narayani, K. Vidya Shetty, Chromium-resistant bacteria and
their environmental condition for hexavalent chromium removal:
a review, Crit. Rev. Env. Sci. Technol., 43 (2013) 955–1009.
- P.M. Fernández, S.C. Viñarta, A.R. Bernal, E.L. Cruz,
L.I.C. Figueroa, Bioremediation strategies for chromium
removal: current research, scale-up approach and future
perspectives, Chemosphere, 208 (2018) 139–148.
- R. Jobby, P. Jha, A.K. Yadav, N. Desai, Biosorption and
biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review, Chemosphere, 207 (2018) 255–266.
- F.J. Acevedo-Aguilar, A.E. Espino-Saldaña, I.L. Leon-Rodriguez, M.E. Rivera-Cano, M. Avila-Rodriguez, K. Wrobel,
K. Wrobel, P. Lappe, M. Ulloa, J.F. Gutiérrez-Corona, Hexavalent
chromium removal in vitro and from industrial wastes, using
chromate-resistant strains of filamentous fungi indigenous to
contaminated wastes, Can. J. Microbiol., 52 (2006) 809–815.
- R. Batool, K. Yrjala, S. Hasnain, Hexavalent chromium reduction
by bacteria from tannery effluent, J. Microbiol. Biotechnol.,
22 (2012) 547–554.
- A. Bingol, H. Ucun, Y.K. Bayhan, A. Karagunduz, A. Cakici,
B. Keskinler, Removal of chromate anions from aqueous stream
by a cationic surfactant-modified yeast, Bioresour. Technol.,
94 (2004) 245–249.
- V. Mary Kensa, Bioremediation – an overview, J. Ind. Pollut.
Control, 27 (2011) 161–168.
- D. Onyancha, W. Mavura, J. Catherine Ngila, P. Ongoma,
J. Chacha, Studies of chromium removal from tannery
wastewaters by algae biosorbents, Spirogyra condensata and
Rhizoclonium hieroglyphicum, J. Hazard. Mater., 158 (2008)
605–614.
- S. Siddiquee, R. Kobun, S. Al Azad, L. Naher, S. Saallah,
P. Chaikaew, Heavy metal contaminants removal from
wastewater using the potential filamentous fungi biomass:
a review, J. Microbiol. Biochem. Technol., 7 (2015) 384–393.
- P.A. Terry, Characterization of Cr ion exchange with
hydrotalcite, Chemosphere, 57 (2004) 541–546.
- L. Mercier, C. Detellier, Preparation, characterization,
and applications as heavy metals sorbents of covalently
grafted thiol functionalities on the interlamellar surface of
montmorillonite, Environ. Sci. Technol., 29 (1995) 1318–1323.
- O. Abollino, M. Aceto, M. Malandrino, C. Sarzanini, E. Mentasti,
Adsorption of heavy metals on
Na-montmorillonite. Effect of
pH and organic substances, Water Res., 37 (2003) 1619–1627.
- D. Wu, Y. Sui, S. He, X. Wang, C. Li, H. Kong, Removal of trivalent
chromium from aqueous solution by zeolite synthesized
from coal fly ash, J. Hazard. Mater., 155 (2008) 415–423.
- M. Majdan, O. Maryuk, S. Pikus, E. Olszewska, R. Kwiatkowski,
H. Skrzypek, Equilibrium, FTIR, scanning electron microscopy
and small wide angle X-ray scattering studies of chromates
adsorption on modified bentonite, J. Mol. Struct., 740 (2005)
203–211.
- V.J. Inglezakis, M. Stylianou, M. Loizidou, Ion exchange and
adsorption equilibrium studies on clinoptilolite, bentonite and
vermiculite, J. Phys. Chem. Solids, 71 (2010) 279–284.
- M.A. Stylianou, V.J. Inglezakis, M.D. Loizidou, A. Agapiou,
G. Itskos, Equilibrium ion exchange studies of Zn2+, Cr3+,
and Mn2+ on natural bentonite, Desal. Water Treat., 57 (2016)
27853–27863.
- Z. Li, S. Xu, G. Xiao, L. Qian, Y. Song, Removal of hexavalent
chromium from groundwater using sodium alginate dispersed
nano zero-valent iron, J. Environ. Manage., 244 (2019) 33–39.
- X. Lv, G. Jiang, X. Xue, D. Wu, T. Sheng, C. Sun, X. Xu, Fe0-Fe3O4
nanocomposites embedded polyvinyl alcohol/sodium alginate
beads for chromium(VI) removal, J. Hazard. Mater., 262 (2013)
748–758.
- J. Wu, X.-B. Wang, R.J. Zeng, Reactivity enhancement of iron
sulfide nanoparticles stabilized by sodium alginate: taking
Cr(VI) removal as an example, J. Hazard. Mater., 333 (2017)
275–284.
- H. Xu, R.-x. Hao, X.-y. Xu, Y. Ding, A.-h. Lu, Y.-h. Li, Removal
of hexavalent chromium by Aspergillus niger through reduction
and accumulation, Geomicrobiol. J., 38 (2021) 20–28.
- Y. Ding, R.-X. Hao, X.-Y. Xu, A.-h. Lu, H. Xu, Improving
immobilization of Pb(II) ions by Aspergillus niger cooperated
with photoelectron by anatase under visible light irradiation,
Geomicrobiol. J., 36 (2019) 591–599.
- V. Gómez, M.P. Callao, Chromium determination and speciation
since 2000, TrAC, Trends Anal. Chem., 25 (2006) 1006–1015.
- D. He, M. Zheng, T. Ma, J. Ni, Nitrite interference and
elimination in diphenylcarbazide (DPCI) spectrophotometric
determination of hexavalent chromium, Water Sci. Technol.,
2 (2015) 223–229.
- Z. Liu, M.A. Uddin, Z. Sun, FT-IR and XRD analysis of natural
Na-bentonite and Cu(II)-loaded Na-bentonite, Spectrochim.
Acta, Part A, 79 (2011) 1013–1016.
- A. Mansri, K.I. Benabadji, J. Desbrières, J. François, Chromium
removal using modified poly(4-vinylpyridinium) bentonite
salts, Desalination, 245 (2009) 95–107.
- M. Barkat, S. Chegrouche, A. Mellah, B. Bensmain, D. Nibou,
M. Boufatit, Application of algerian bentonite in the removal
of cadmium(II) and chromium(VI) from aqueous solutions,
J. Surf. Eng. Mater. Adv. Technol., 4 (2014) 210–226.
- D. Park, Y.-S. Yun, J.M. Park, Use of dead fungal biomass for the
detoxification of hexavalent chromium: screening and kinetics,
Process Biochem., 40 (2005) 2559–2565.
- U. Thacker, D. Madamwar, Reduction of toxic chromium
and partial localization of chromium reductase activity
in bacterial isolate DM1, World J. Microbiol. Biotechnol.,
21 (2005) 891–899.
- B. Dhal, H. Thatoi, N. Das, B.D. Pandey, Reduction of hexavalent
chromium by Bacillus sp. isolated from chromite mine soils
and characterization of reduced product, J. Chem. Technol.
Biotechnol., 85 (2010) 1471–1479.
- A.M. Gutierrez, J.J.P. Cabriales, M.M. Vega, Isolation and characterization
of hexavalent chromium-reducing rhizospheric
bacteria from a wetland, Int. J. Phytorem., 12 (2010) 317–334.
- R.M. Bennett, P.R.F. Cordero, G.S. Bautista, G.R. Dedeles,
Reduction of hexavalent chromium using fungi and bacteria
isolated from contaminated soil and water samples, Chem.
Ecol., 29 (2013) 320–328.
- A.A. Al-Homaidan, H.S. Al-Qahtani, A.A. Al-Ghanayem,
F. Ameen, I.B.M. Ibraheem, Potential use of green algae as a
biosorbent for hexavalent chromium removal from aqueous
solutions, Saudi J. Biol. Sci., 25 (2018) 1733–1738.
- M.G. da Fonseca, M.M. de Oliveira, L.N.H. Arakaki, Removal
of cadmium, zinc, manganese and chromium cations from
aqueous solution by a clay mineral, J. Hazard. Mater., 37 (2006)
288–292.
- M. Faatz, F. Gröhn, G. Wegner, Amorphous calcium carbonate:
synthesis and potential intermediate in biomineralization,
Adv. Mater., 16 (2004) 996–1000.
- J. Miot, L. Remusat, E. Duprat, A. Gonzalez, S. Pont, M. Poinsot,
Fe biomineralization mirrors individual metabolic activity in
a nitrate-dependent Fe(II)-oxidizer, Front. Microbiol., 6 (2015)
879, doi: 10.3389/fmicb.2015.00879.
- R.L. Kimber, H. Bagshaw, K. Smith, D.M. Buchanan, V.S. Coker,
J.S. Cavet, J.R. Lloyd, Biomineralization of Cu2S nanoparticles
by Geobacter sulfurreducens, Appl. Environ. Microbiol., 86 (2020),
doi: 10.1128/AEM.00967-20.
- A.P. Das, S. Singh, Occupational health assessment of chromite
toxicity among Indian miners, Indian J. Occup. Environ. Med.,
15 (2011) 6–13.
- E.A. Ashour, M.A. Tony, Eco-friendly removal of hexavalent
chromium from aqueous solution using natural clay mineral:
activation and modification effects, SN Appl. Sci., 2 (2020) 2042,
doi: 10.1007/s42452-020-03873-x.
- M.K. Guria, A.K. Guha, M. Bhattacharyya, A green chemical
approach for biotransformation of Cr(VI) to Cr(III), utilizing
Fusarium sp. MMT1 and consequent structural alteration of
cell morphology, J. Environ. Chem. Eng., 2 (2014) 424–433.
- L. Shi, J. Xue, B. Liu, P. Dong, Z. Wen, Z. Shen, Y. Chen,
Hydrogen ions and organic acids secreted by ectomycorrhizal
fungi, Pisolithus sp1, are involved in the efficient removal of
hexavalent chromium from waste water, Ecotoxicol. Environ.
Saf., 161 (2018) 430–436.
- A.L. Neal, K. Lowe, T.L. Daulton, J. Jones-Meehan, B.J. Little,
Oxidation state of chromium associated with cell surfaces of
Shewanella oneidensis during chromate reduction, Appl. Surf.
Sci., 2 (2002) 150–159.
- M. Önal, Swelling and cation-exchange capacity relationship
for the samples obtained from a bentonite by acid activations
and heat treatments, Appl. Clay Sci., 37 (2007) 74–80.
- M. Holmboe, S. Wold, M. Jonsson, Porosity investigation of
compacted bentonite using XRD profile modeling, J. Contam.
Hydrol., 128 (2012) 19–32.
- A. Gupta, S.G. Bhagwat, J.K. Sainis, Synechococcus elongatus PCC
7942 is more tolerant to chromate as compared to Synechocystis
sp. PCC 6803, Biometals, 26 (2013) 309–319.
- Y. He, L. Dong, S. Zhou, Y. Jia, R. Gu, Q. Bai, J. Gao, Y. Li, H. Xiao,
Chromium resistance characteristics of Cr(VI) resistance genes
ChrA and ChrB in Serratia sp. S2, Ecotoxicol. Environ. Saf.,
57 (2018) 417–423.