References
- A. Azara, P. Castiglia, A. Piana, M.D. Masia, A. Palmieri, B. Arru,
G. Maida, M. Dettori, Derogation from drinking water quality
standards in Italy according to the European Directive 98/83/EC
and the Legislative Decree 31/2001 - a look at the recent past,
Ann. Ig., 30 (2018) 517–526.
- J. Wąsowski, A. Grabińska-Łoniewska, Recontamination of
water in the municipal supply system of the city of Warsaw,
Ochrona Srodowiska, 3 (1995) 59–62.
- J. Nawrocki, J. Swietlik, Analysis of corrosion phenomena in
water-pipe networks, Ochrona Srodowiska, 33 (2011) 27–40.
- P. Marcinowski, M. Wojtkowska, G. Sinicyn, Surface water
monitoring in the area of the Zelazny most waste disposal,
Przemysł Chemiczny, 87 (2008) 512–519.
- N. Khatri, S. Tyagi, D. Rawtani, Recent strategies for the
removal of iron from water: a review, J. Water Process Eng.,
19 (2017) 291–304.
- S. Chaturvedi, P.N. Dave, Removal of iron for safe drinking
water, Desalination, 303 (2012) 1–11.
- I. Krupińska, Removing iron and organic substances from water
over the course of its treatment with the application of average
and highly alkaline polyaluminium chlorides, Molecules,
26 (2021) 1367, doi: 10.3390/molecules26051367.
- P. Sarin, V.L. Snoeyink, J. Bebee, K.K. Jim, M.A. Beckett,
W.M. Kriven, J.A. Clement, Iron release from corroded iron
pipes in drinking water distribution systems: effect of dissolved
oxygen, Water Res., 38 (2004) 1259–1269.
- H. Tong, Z. Li, X. Hu, W. Xu, Z. Li, Metals in occluded water:
a new perspective for pollution in drinking water distribution
systems, Int. J. Environ. Res. Public Health, 16 (2019) 2849,
doi: 10.3390/ijerph16162849.
- M. Świderska-Bróż, M. Wolska, Major contributors to selfcontamination
of water in distribution systems, Ochrona
Srodowiska, 28 (2004) 29–34.
- M. Świderska-Bróż, M. Wolska, Efficiency of ozonation
followed by filtration through a biologically active adsorption
bed at removing biogenic organic substances from surface
water, Environ. Prot. Eng., 38 (2012) 19–28.
- Z. Xue, Y. Seo, Impact of chlorine disinfection on redistribution
of cell clusters from biofilms, Environ. Sci. Technol., 47 (2013)
1354–1372.
- S. Liu, C. Gunawan, N. Barraud, S.A. Rice, E.J. Harry, R. Amal,
Understanding, monitoring, and controlling biofilm growth
in drinking water distribution systems, Environ. Sci. Technol.,
50 (2016) 8954–8976.
- A. Pietrzyk, D. Papciak, The influence of water treatment
technology on the process of biofilm formation on the selected
installation materials, J. Civ. Eng. Environ. Archit., 64 (2017)
131–143.
- A. Młyńska, M. Zielina, A comparative study of portland cements
CEM I used for water pipe renovation in terms of pollutants
leaching from cement coatings and their impact on water quality,
J. Water Supply Res. Technol. AQUA, 67 (2018) 685–696.
- World Health Organization WHO, Guidelines for Drinking-
Water Quality, 4th ed., Geneva, 2011. Available at https://www.
who.int/publications/i/item/9789241549950
- Ł. Weber, Żelazo w wodzie podziemnej. Problemy techniczne i
eksploatacyjne związane z jego występowaniem na wybranych
przykładach (Iron in groundwater. Technical and operational
problems related to its occurrence on selected examples),
Technologia Wody, 70 (2020) 24–29.
- K. Bonetyński, D. Kowalski, K. Stelmach, On the inadequacy
of the iron concentration standard for potable water included
in the ministry of health and social care directive, Ochrona
Srodowiska, 4 (1999) 9–11.
- M. Li, Y. Wang, Z. Liu, Y. Sha, G.V. Korshin, Y. Chen, Metalrelease
potential from iron corrosion scales under stagnant and
active flow, and varying water quality conditions, Water Res.,
175 (2020) 115675, 1–12, doi: 10.1016/j.watres.2020.115675.
- K.J. Pieper, M. Tang, M.A. Edwards, Flint water crisis caused
by interrupted corrosion control: investigating “ground zero”
home, Environ. Sci. Technol., 51 (2017) 2007–2014.
- J. Lin, M. Ellaway, R. Adrien, Study of corrosion material
accumulated on the inner wall of steel water pipe, Corros. Sci.,
43 (2001) 2065–2081.
- D. Papciak, B. Tchórzewska-Cieslak, K. Pietrucha-Urbanik,
A. Pietrzyk, Analysis of the biological stability of tap water on
the basis of risk analysis and parameters limiting the secondary
growth of microorganisms in water distribution systems,
Desal. Water Treat., 117 (2018) 1–8.
- S.M. Ekström, O. Regnell, H.E. Reader, P.A. Nilsson, S. Löfgren,
E.S. Kritzberg, Increasing concentrations of iron in surface
waters as a consequence of reducing conditions in the catchment
area, J. Geophys. Res.: Biogeosci., 121 (2016) 479–493.
- G.K. Khadse, P.M. Patni, P.K. Labhasetwar, Removal of iron and
manganese from drinking water supply, Sustain. Water Resour.
Manage., 1 (2015) 157–165.
- A.A. Alshehri, S.J. Duranceau, J.S. Taylor, E.D. Stone,
Investigating iron release in distribution systems with
blend variations of source waters and phosphate inhibitors,
Desal. Water Treat., 8 (2009) 211–220.
- Municipal Water Supply and Sewerage Company in the
Capital City of Warsaw Joint Stock Company, Annual Report,
Warsaw, 2017. Available at https://mpwik.com.pl/download.
php?id=2068.
- J.C.B. Queiroz, J.R. Sturaro, A.C.F. Saraiva, P.M.B. Landim,
Geochemical characterization of heavy metal contaminated
area using multivariate factorial kriging, Environ. Geol.,
55 (2008) 95–105.
- C.D. Johnson, A. Nandi, T.A. Joyner, I. Luffman, Iron and
manganese in groundwater: using kriging and GIS to locate
high concentrations in Buncombe County, North Carolina,
Groundwater, 56 (2017) 87–95.
- R. Giraldo, L. Herrera, V. Leiva, Cokriging prediction using as
secondary variable a functional random field with application
in environmental pollution, Mathematics, 8 (2020) 1305,
doi: 10.3390/math8081305.
- C. Johnson, Using Kriging, Cokriging, and GIS to Visualize Fe
and Mn in Groundwater, Electronic Theses and Dissertations,
2015. Available at http://dc.etsu.edu/etd/2498
- D. Myers, Matrix formulation of cokriging, Math. Geol.,
14 (1982) 249–257.
- J. Rivoirard, Which models for collocated cokriging?, Math.
Geol., 33 (2001) 117–131.
- J. Mateu, E. Romano, Advances in spatial functional statistics,
Stochastic Environ. Res. Risk Assess., 31 (2017) 1–6.
- B. Szeląg, A. Gawdzik, A. Gawdzik, Application of selected
methods of black box for modelling the settleability process
in wastewater treatment plant, Ecol. Chem. Eng. S, 24 (2017)
119–127.
- P. Tziachris, E. Metaxa, F. Papadopoulos, M. Papadopoulou,
Spatial modelling and prediction assessment of soil iron
using kriging interpolation with pH as auxiliary information,
ISPRS Int. J. Geo-Inf., 6 (2017) 283, doi: 10.3390/ijgi6090283.
- T. Miller, G. Poleszczuk, Prediction of the seasonal changes
of the chloride concentrations in urban water reservoir,
Ecol. Chem. Eng. S, 24 (2017) 595–611.
- T. Chai, R. Draxler, Root mean square error (RMSE) or mean
absolute error (MAE)? – arguments against avoiding RMSE in
the literature, Geosci. Model Dev., 7 (2014) 1247–1250.
- W. Zeng, G. Lei, H. Zhang, M. Hong, C. Xu, J. Wu, J. Huang,
Estimating root zone moisture from surface soil using limited
data, Ecol. Chem. Eng. S, 24 (2017) 501–516.
- T. Hengl, M. Nussbaum, M.N. Wright, G.B.M. Heuvelink,
B. Gräler, Random forest as a generic framework for predictive
modeling of spatial and spatio-temporal variables, Peer J.,
6 (2018) e5518, doi: 10.7717/peerj.5518.
- M. Mazzei, A.L. Palma, Comparative Analysis of Models of
Location and Spatial Interaction, International Conference
on Computational Science and Its Applications, ICCSA 2014:
Computational Science and Its Applications – ICCSA 2014,
2014, pp. 253–267, doi: 10.1007/978-3-319-09147-1_19.
- L. McLeod, L. Bharadwaj, T. Epp, C.L. Waldner, Use of principal
components analysis and kriging to predict groundwatersourced
rural drinking water quality in Saskatchewan, Int.
J. Environ. Res. Public Health, 14 (2017) 1065, doi: 10.3390/ijerph14091065.