References

  1. A. Azara, P. Castiglia, A. Piana, M.D. Masia, A. Palmieri, B. Arru, G. Maida, M. Dettori, Derogation from drinking water quality standards in Italy according to the European Directive 98/83/EC and the Legislative Decree 31/2001 - a look at the recent past, Ann. Ig., 30 (2018) 517–526.
  2. J. Wąsowski, A. Grabińska-Łoniewska, Recontamination of water in the municipal supply system of the city of Warsaw, Ochrona Srodowiska, 3 (1995) 59–62.
  3. J. Nawrocki, J. Swietlik, Analysis of corrosion phenomena in water-pipe networks, Ochrona Srodowiska, 33 (2011) 27–40.
  4. P. Marcinowski, M. Wojtkowska, G. Sinicyn, Surface water monitoring in the area of the Zelazny most waste disposal, Przemysł Chemiczny, 87 (2008) 512–519.
  5. N. Khatri, S. Tyagi, D. Rawtani, Recent strategies for the removal of iron from water: a review, J. Water Process Eng., 19 (2017) 291–304.
  6. S. Chaturvedi, P.N. Dave, Removal of iron for safe drinking water, Desalination, 303 (2012) 1–11.
  7. I. Krupińska, Removing iron and organic substances from water over the course of its treatment with the application of average and highly alkaline polyaluminium chlorides, Molecules, 26 (2021) 1367, doi: 10.3390/molecules26051367.
  8. P. Sarin, V.L. Snoeyink, J. Bebee, K.K. Jim, M.A. Beckett, W.M. Kriven, J.A. Clement, Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen, Water Res., 38 (2004) 1259–1269.
  9. H. Tong, Z. Li, X. Hu, W. Xu, Z. Li, Metals in occluded water: a new perspective for pollution in drinking water distribution systems, Int. J. Environ. Res. Public Health, 16 (2019) 2849, doi: 10.3390/ijerph16162849.
  10. M. Świderska-Bróż, M. Wolska, Major contributors to selfcontamination of water in distribution systems, Ochrona Srodowiska, 28 (2004) 29–34.
  11. M. Świderska-Bróż, M. Wolska, Efficiency of ozonation followed by filtration through a biologically active adsorption bed at removing biogenic organic substances from surface water, Environ. Prot. Eng., 38 (2012) 19–28.
  12. Z. Xue, Y. Seo, Impact of chlorine disinfection on redistribution of cell clusters from biofilms, Environ. Sci. Technol., 47 (2013) 1354–1372.
  13. S. Liu, C. Gunawan, N. Barraud, S.A. Rice, E.J. Harry, R. Amal, Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems, Environ. Sci. Technol., 50 (2016) 8954–8976.
  14. A. Pietrzyk, D. Papciak, The influence of water treatment technology on the process of biofilm formation on the selected installation materials, J. Civ. Eng. Environ. Archit., 64 (2017) 131–143.
  15. A. Młyńska, M. Zielina, A comparative study of portland cements CEM I used for water pipe renovation in terms of pollutants leaching from cement coatings and their impact on water quality, J. Water Supply Res. Technol. AQUA, 67 (2018) 685–696.
  16. World Health Organization WHO, Guidelines for Drinking- Water Quality, 4th ed., Geneva, 2011. Available at https://www. who.int/publications/i/item/9789241549950
  17. Ł. Weber, Żelazo w wodzie podziemnej. Problemy techniczne i eksploatacyjne związane z jego występowaniem na wybranych przykładach (Iron in groundwater. Technical and operational problems related to its occurrence on selected examples), Technologia Wody, 70 (2020) 24–29.
  18. K. Bonetyński, D. Kowalski, K. Stelmach, On the inadequacy of the iron concentration standard for potable water included in the ministry of health and social care directive, Ochrona Srodowiska, 4 (1999) 9–11.
  19. M. Li, Y. Wang, Z. Liu, Y. Sha, G.V. Korshin, Y. Chen, Metalrelease potential from iron corrosion scales under stagnant and active flow, and varying water quality conditions, Water Res., 175 (2020) 115675, 1–12, doi: 10.1016/j.watres.2020.115675.
  20. K.J. Pieper, M. Tang, M.A. Edwards, Flint water crisis caused by interrupted corrosion control: investigating “ground zero” home, Environ. Sci. Technol., 51 (2017) 2007–2014.
  21. J. Lin, M. Ellaway, R. Adrien, Study of corrosion material accumulated on the inner wall of steel water pipe, Corros. Sci., 43 (2001) 2065–2081.
  22. D. Papciak, B. Tchórzewska-Cieslak, K. Pietrucha-Urbanik, A. Pietrzyk, Analysis of the biological stability of tap water on the basis of risk analysis and parameters limiting the secondary growth of microorganisms in water distribution systems, Desal. Water Treat., 117 (2018) 1–8.
  23. S.M. Ekström, O. Regnell, H.E. Reader, P.A. Nilsson, S. Löfgren, E.S. Kritzberg, Increasing concentrations of iron in surface waters as a consequence of reducing conditions in the catchment area, J. Geophys. Res.: Biogeosci., 121 (2016) 479–493.
  24. G.K. Khadse, P.M. Patni, P.K. Labhasetwar, Removal of iron and manganese from drinking water supply, Sustain. Water Resour. Manage., 1 (2015) 157–165.
  25. A.A. Alshehri, S.J. Duranceau, J.S. Taylor, E.D. Stone, Investigating iron release in distribution systems with blend variations of source waters and phosphate inhibitors, Desal. Water Treat., 8 (2009) 211–220.
  26. Municipal Water Supply and Sewerage Company in the Capital City of Warsaw Joint Stock Company, Annual Report, Warsaw, 2017. Available at https://mpwik.com.pl/download. php?id=2068.
  27. J.C.B. Queiroz, J.R. Sturaro, A.C.F. Saraiva, P.M.B. Landim, Geochemical characterization of heavy metal contaminated area using multivariate factorial kriging, Environ. Geol., 55 (2008) 95–105.
  28. C.D. Johnson, A. Nandi, T.A. Joyner, I. Luffman, Iron and manganese in groundwater: using kriging and GIS to locate high concentrations in Buncombe County, North Carolina, Groundwater, 56 (2017) 87–95.
  29. R. Giraldo, L. Herrera, V. Leiva, Cokriging prediction using as secondary variable a functional random field with application in environmental pollution, Mathematics, 8 (2020) 1305, doi: 10.3390/math8081305.
  30. C. Johnson, Using Kriging, Cokriging, and GIS to Visualize Fe and Mn in Groundwater, Electronic Theses and Dissertations, 2015. Available at http://dc.etsu.edu/etd/2498
  31. D. Myers, Matrix formulation of cokriging, Math. Geol., 14 (1982) 249–257.
  32. J. Rivoirard, Which models for collocated cokriging?, Math. Geol., 33 (2001) 117–131.
  33. J. Mateu, E. Romano, Advances in spatial functional statistics, Stochastic Environ. Res. Risk Assess., 31 (2017) 1–6.
  34. B. Szeląg, A. Gawdzik, A. Gawdzik, Application of selected methods of black box for modelling the settleability process in wastewater treatment plant, Ecol. Chem. Eng. S, 24 (2017) 119–127.
  35. P. Tziachris, E. Metaxa, F. Papadopoulos, M. Papadopoulou, Spatial modelling and prediction assessment of soil iron using kriging interpolation with pH as auxiliary information, ISPRS Int. J. Geo-Inf., 6 (2017) 283, doi: 10.3390/ijgi6090283.
  36. T. Miller, G. Poleszczuk, Prediction of the seasonal changes of the chloride concentrations in urban water reservoir, Ecol. Chem. Eng. S, 24 (2017) 595–611.
  37. T. Chai, R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7 (2014) 1247–1250.
  38. W. Zeng, G. Lei, H. Zhang, M. Hong, C. Xu, J. Wu, J. Huang, Estimating root zone moisture from surface soil using limited data, Ecol. Chem. Eng. S, 24 (2017) 501–516.
  39. T. Hengl, M. Nussbaum, M.N. Wright, G.B.M. Heuvelink, B. Gräler, Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables, Peer J., 6 (2018) e5518, doi: 10.7717/peerj.5518.
  40. M. Mazzei, A.L. Palma, Comparative Analysis of Models of Location and Spatial Interaction, International Conference on Computational Science and Its Applications, ICCSA 2014: Computational Science and Its Applications – ICCSA 2014, 2014, pp. 253–267, doi: 10.1007/978-3-319-09147-1_19.
  41. L. McLeod, L. Bharadwaj, T. Epp, C.L. Waldner, Use of principal components analysis and kriging to predict groundwatersourced rural drinking water quality in Saskatchewan, Int. J. Environ. Res. Public Health, 14 (2017) 1065, doi: 10.3390/ijerph14091065.