References

  1. Z. Zhu, R. Rao, Z. Zhao, J. Chen, W. Jiang, F. Bi, Y. Yang, X. Zhang, Research progress on removal of phthalates pollutants from environment, J. Mol. Liq., 355 (2022) 118930, doi: 10.1016/j.molliq.2022.118930.
  2. N. Lin, Y. Gong, R. Wang, Y. Wang, X. Zhang, Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: design, applications and mechanisms, J. Hazard. Mater., 424 (2022) 127637, doi: 10.1016/j.jhazmat.2021.127637.
  3. N. Liu, W. Dai, F. Fei, H. Xu, J. Lei, G. Quan, Y. Zheng, X. Zhang, L. Tang, Insights into the photocatalytic activation persulfate by visible light over ReS2/MIL-88B(Fe) for highly efficient degradation of ibuprofen: combination of experimental and theoretical study, Sep. Purif. Technol., 297 (2022) 121545, doi: 10.1016/j.seppur.2022.121545.
  4. Y. Yang, X. Li, B. Jie, Z. Zheng, J. Li, C. Zhu, S. Wang, J. Xu, X. Zhang, Electron structure modulation and bicarbonate surrounding enhance Fenton-like reactions performance of Co-Co PBA, J. Hazard. Mater., 437 (2022) 129372, doi: 10.1016/j. jhazmat.2022.129372.
  5. R. Konta, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates, Phys. Chem. Chem. Phys., 5 (2003) 3061–3065.
  6. M.S. Gui, W.D. Zhang, Q.X. Su, C.H Chen, Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts, J. Solid State Chem., 184 (2011) 1977–1982.
  7. W. He, Y. Sun, G. Jiang, H. Huang, X. Zhang, F. Dong, Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway, Appl. Catal., B, 232 (2018) 340–347.
  8. C.H. Wu, C.Y. Kuo, C.D. Dong, C.W. Chen, Y.L. Lin, W.J. Huang, Single-step solvothermal process for synthesizing SnO2/Bi2WO6 composites with high photocatalytic activity in the photodegradation of C.I. Reactive Red 2 under solar light, React. Kinet. Mech. Catal., 126 (2019) 1097–1113.
  9. C.H. Wu, C.D. Dong, C.W. Chen, Y.L. Lin, S.R. Jhu, Y.H. Lin, Enhanced visible light photocatalysis of Bi2O3/BiVO4 and Bi2O3/Ag3VO4 heterojunction: effects of synthetic procedures, Desal. Water Treat., 209 (2021) 267–279.
  10. H. Fang, Y. Pan, H. Yan, L. Xu, C. Pan, Surface deposition of Ag/Ag3VO4 on rod-like BiPO4 to construct plasmon-induced heterostructures with ameliorated photocatalytic performance, Mater. Sci. Semicond. Process., 127 (2021) 105722, doi: 10.1016/j.mssp.2021.105722.
  11. P. Wang, H. Tang, Y. Ao, C. Wang, J. Hou, J. Qian, Y. Li, In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation, J. Alloys Compd., 688 (2016) 1–7.
  12. S. Li, S. Hu, W. Jiang, Y. Liu, J. Liu, Z. Wang, Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible light photocatalytic activity, J. Colloid Interface Sci., 501 (2017) 156–163.
  13. J. Zhang, Z. Ma, Enhanced visible light photocatalytic performance of Ag3VO4/Bi2WO6 heterojunctions in removing aqueous dyes and tetracycline hydrochloride, J. Taiwan Inst. Chem. Eng., 78 (2017) 212–218.
  14. J. Zhang, Z. Ma, Flower-like Ag3VO4/BiOBr n-p heterojunction photocatalysts with enhanced visible light-driven catalytic activity, Mol. Catal., 436 (2017) 190–198.
  15. S. Wang, Y. Guan, L. Wang, W. Zhao, H. He, J. Xiao, S. Yang, C. Sun, Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption-photocatalysis for efficient treatment of dye wastewater, Appl. Catal., B, 168–169 (2015) 448–457.
  16. J. Zhang, Z. Ma, Ag3VO4/BiOIO3 heterojunction with enhanced visible light-driven catalytic activity, J. Taiwan Inst. Chem. Eng., 88 (2018) 177–185.
  17. C.H. Wu, C.Y. Kuo, C.D. Dong, C.W. Chen, Y.L. Lin, Y.S. Kuan, Synthesis, characterization and photocatalytic activity of a novel Bi2O3/Ag3VO4 heterojunction photocatalyst, Desal. Water Treat., 198 (2020) 364–375.
  18. W. Zhao, Y. Feng, H. Huang, P. Zhou, J. Li, L. Zhang, B. Dai, J. Xu, F. Zhu, N. Sheng, D.Y.C. Leung, A novel
    z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: study on the excellent photocatalytic performance and photocatalytic mechanism, Appl. Catal., B, 245 (2019) 448–458.
  19. L. Liu, T. Hu, K. Dai, J. Zhang, C. Liang, A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation, Chin. J. Catal., 42 (2021) 46–55.
  20. C.H. Wu, C.D. Dong, C.W. Chen, Y.L. Lin, Y.R. Cheng, G.Y. Lee, Synthesis of novel Bi2O3/BiVO4/Ag3VO4 heterojunction photocatalyst with enhanced photocatalytic activity under visible light irradiation, Desal. Water Treat., 228 (2021) 351–361.
  21. M. Su, C. He, V.K. Sharma, M.A. Asi, D. Xia, X.Z. Li, H. Deng, Y. Xiong, Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H2O2/visible light, J. Hazard. Mater., 211–212 (2012) 95–103.
  22. Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species and TiO2 surface characteristic in
    UV-illuminated photodegradation of Acid Orange 7, J. Photochem. Photobiol., A, 172 (2005) 47–54.
  23. H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, S. Wang, Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation, J. Phys. Chem. C, 118 (2014) 14379–14387.
  24. J. Chen, Y. Yang, S. Zhao, F. Bi, L. Song, N. Liu, J. Xu, Y. Wang, X. Zhang, Stable black phosphorus encapsulation in porous mesh-like UiO-66 promoted charge transfer for photocatalytic oxidation of toluene and o‑dichlorobenzene: performance, degradation pathway, and mechanism, ACS Catal., 12 (2022) 8069−8081.
  25. P.A. Webb, C. Orr, Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp, Norcross, 1997.
  26. M. Thommes, In: G.Q. Lu, X.S. Zhao, Eds., Nanoporous Materials: Science and Engineering, Imperial College Press, London, 2004, p. 317.
  27. Y. Wang, F. Bi, Y. Wang, M. Jia, X. Tao, Y. Jin, X. Zhang, MOF-derived CeO2 supported Ag catalysts for toluene oxidation: the effect of synthesis method, Mol. Catal., 515 (2021) 111922, doi:10.1016/j.mcat.2021.111922.
  28. H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance, Appl. Catal., B, 170–171 (2015) 206–214.
  29. J. Sun, X. Li, Q. Zhao, M.O. Tade, S. Liu, Construction of p-n heterojunction β-Bi2O3/BiVO4 nanocomposite with improved photoinduced charge transfer property and enhanced activity in degradation of ortho-dichlorobenzene, Appl. Catal., B, 219 (2017) 259–268.
  30. Y. Yang, W. Ji, X. Li, Z. Zheng, F. Bi, M. Yang, J. Xu, X. Zhang, Insights into the degradation mechanism of perfluorooctanoic acid under visible light irradiation through fabricating flower-shaped Bi5O7I/ZnO n-n heterojunction microspheres, Chem. Eng. J., 420 (2021) 129934, doi: 10.1016/j.cej.2021.129934.
  31. D. Ma, J. Wu, M. Gao, Y. Xin, T. Ma, Y. Sun, Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible light photocatalytic activity, Chem. Eng. J., 290 (2016) 136–146.
  32. Y. Xie, Y. Dai, X. Yuan, L. Jiang, L. Zhou, Z. Wu, J. Zhang, H. Wang, T. Xiong, Insight on the plasmonic Z-scheme mechanism underlying the highly efficient photocatalytic activity of silver molybdate/silver vanadate composite in rhodamine B degradation, J. Colloid Interface Sci., 530 (2018) 493–504.
  33. S. Akel, R. Dillert, N.O. Balayeva, R. Boughaled, J. Koch, M. El Azzouzi, D.W. Bahnemann, Ag/Ag2O
    as a co-catalyst in TiO2 photocatalysis: effect of the co-catalyst/photocatalyst mass ratio, Catalysts, 8 (2018) 647, doi: 10.3390/catal8120647.
  34. X. Ma, Z. Ma, T. Liao, X. Liu, Y. Zhang, L. Li, W. Li, B. Hou, Preparation of BiVO4/BiOCl heterojunction photocatalyst by in-situ transformation method for norfloxacin photocatalytic degradation, J. Alloys Compd., 702 (2017) 68–74.
  35. J. Zeng, J. Zhong, J. Li, Z. Xiang, X. Liu, J. Chen, Improvement of photocatalytic activity under solar light of BiVO4 microcrystals synthesized by surfactant-assisted hydrothermal method, Mater. Sci. Semicond. Process., 27 (2014) 41–46.
  36. Q. Chen, Y. Wang, Y. Wang, X. Zhang, D. Duan, C. Fan, Nitrogendoped carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced visible light driven photocatalytic activity and stability, J. Colloid Interface Sci., 491 (2017) 238–245.
  37. Y. Yang, S. Zhao, F. Bi, J. Chen, Y. Wang, L. Cui, J. Xu, X. Zhang, Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: the crucial roles of interface defects and band structure, Appl. Catal., B, 315 (2022) 121550, doi: 10.1016/j.apcatb.2022.121550.
  38. X. Hu, C. Hu, Preparation and visible light photocatalytic activity of Ag3VO4 powders, J. Solid State Chem., 180 (2007) 725–732.
  39. S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Y. Chen, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation, J. Hazard. Mater., 172 (2009) 1415–1423.
  40. J. Zhang, Z. Ma, Ag-Ag3VO4/AgIO3 composites with enhanced visible light-driven catalytic activity, J. Colloid Interface Sci., 524 (2018) 16–24.
  41. K. Dai, L. Lu, J. Dong, Z. Ji, G. Zhu, Q. Liu, Z. Liu, Y. Zhang, D. Li, C. Liang, Facile synthesis of a surface plasmon resonanceenhanced Ag/AgBr heterostructure and its photocatalytic performance with 450 nm LED illumination, Dalton Trans., 42 (2013) 4657–4662.
  42. S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, H. He, Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible light photocatalytic activity for triphenylmethane dye degradation, Appl. Catal., B, 144 (2014) 885–892.
  43. X. Meng, Z. Zhang, Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches, J. Mol. Catal. A: Chem., 423 (2016) 533–549.
  44. Q. Shi, W. Zhao, L. Xie, J. Chen, M. Zhang, Y. Li, Enhanced visible light driven photocatalytic mineralization of indoor toluene via a BiVO4/reduced graphene oxide/Bi2O3 all-solid-state Z-scheme system, J. Alloys Compd., 662 (2016) 108–117.
  45. L. Jiang, X. Yuan, G. Zeng, J. Liang, X. Chen, H. Yu, H. Wang, Z. Wu, J. Zhang, T. Xiong, In-situ synthesis of direct solidstate dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant, Appl. Catal., B, 227 (2018) 376–385.
  46. B. Samran, C. Saranyoo, Highly enhanced photoactivity of BiFeO3/Bi2WO6 composite flms under visible light irradiation, Physica B, 575 (2019) 411683, doi: 10.1016/j.physb.2019.411683.
  47. C. Lai, M. Zhang, B. Li, D. Huang, G. Zeng, L. Qin, X. Liu, H. Yi, M. Cheng, L. Li, Z. Chen, L. Chen, Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight, Chem. Eng. J., 358 (2019) 891–902.