References
- S. Baruah, N.M. Khan, J. Dutta, Perspectives and applications
of nanotechnology in water treatment, Environ. Chem. Lett.,
14 (2016) 1−14.
- S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment
applications, J. Ind. Eng. Chem., 19 (2013) 1761−1769.
- H. Alalwan, A. Alminshid, An in-situ DRIFTS study of acetone
adsorption mechanism on TiO2 nanoparticles, Spectrochim.
Acta, Part A, 229 (2020) 117990, doi: 10.1016/j.saa.2019.117990.
- Q. Guo, C. Zhou, Z. Ma, X. Yang, Fundamentals of TiO2
photocatalysis: concepts, mechanisms, and challenges, Adv.
Mater., Special Issue: DICP’s 70th Anniversary Special Issue on
Advanced Materials for Clean Energy, 31 (2019) 1901997, doi:
10.1002/adma.201901997.
- K.P. Gopinath, N.V. Madhav, A. Krishnan, R. Malolan,
G. Rangarajan, Present applications of titanium dioxide
for the photocatalytic removal of pollutants from water: a
review, J. Environ. Manage., 270 (2020) 110906, doi: 10.1016/j.jenvman.2020.110906.
- J.-M. Herrmann, C. Guillard, P. Pichat, Heterogeneous
photocatalysis: an emerging technology for water treatment,
Catal. Today, 17 (1993) 7–20.
- R.F.P. Nogueira, W.F. Jardim, TiO2-fixed-bed reactor for water
decontamination using solar light, Sol. Energy, 56 (1996)
471–477.
- I.G. Richardson, The nature of C-S-H in hardened cements,
Cem. Concr. Res., 29 (1999) 1131–1147.
- A. Korpa, T. Kowald, R. Trettin, Hydration behaviour, structure
and morphology of hydration phases in advanced cementbased
systems containing micro and nanoscale pozzolanic
additives, Cem. Concr. Res., 38 (2008) 955–962.
- G. Li, Properties of high-volume fly ash concrete incorporating
nano-SiO2, Cem. Concr. Res., 34 (2004) 1043–1049.
- K. Sobolev, M F. Gutiérrez, How nanotechnology can change
the concrete world, Am. Ceram. Soc. Bull., 84 (2005) 16–20.
- J. Vera-Agullo, V. Chozas-Ligero, D. Portillo-Rico, M.J. García-Casas, A. Gutiérrez-Martínez, J.M. Mieres-Royo, J. Grávalos-Moreno, Mortar and Concrete Reinforced With Nanomaterials,
Z. Bittnar, P.J.M. Bartos, J. Němeček, V. Šmilauer, J. Zeman,
Eds., Nanotechnology in Construction 3, Springer, Berlin,
Heidelberg, 2009, pp. 383–388.
- A. Nazari, S. Riahi, S. Riahi, S.F. Shamekhi, A. Khademno,
Assessment of the effects of the cement paste composite in
presence TiO2 nanoparticles, J. Am. Sci., 6 (2010) 43–46.
- A. Karimipour, M. Ghalehnovi, J. de Brito, Effect of micro
polypropylene fibres and nano TiO2
on the fresh- and hardened-state properties of geopolymer concrete, Constr. Build.
Mater., 300 (2021) 124239, doi: 10.1016/j.conbuildmat.2021.124239.
- B.Y. Lee, J.J. Thomas, Influence of TiO2 Nanoparticles on Early
C3S Hydration, Nanotechnology of Concrete: The Next Big
Thing is Small, ACI Convention, New Orleans, LA, USA, 2009,
pp. 35–44.
- B.Y. Lee, K.E. Kurtis, Proposed acceleratory effect of TiO2
nanoparticles on belite hydration: preliminary results, J. Am.
Ceram. Soc., 95 (2012) 365–368.
- L. Cassar, Photocatalysis of cementitious materials: clean
buildings and clean air, MRS Bull., 29 (2004) 328–331.
- M. Maury-Ramirez, K. Demeestere, N. De Belie, Photocatalytic
activity of titanium dioxide nanoparticle coatings applied
on autoclaved aerated concrete: effect of weathering on
coating physical characteristics and gaseous toluene removal,
J. Hazard. Mater., 211–212 (2012) 218–225.
- A. Kumar, M. Khan, J. He, I.M.C. Lo, Recent developments
and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: a
critical review, Water Res., 170 (2020) 115356, doi: 10.1016/j.watres.2019.115356.
- L. Zang, W. Macyk, C. Lange, W.F. Maier, C. Antonius,
D. Meissner, H. Kisch, Visible-light detoxification and charge
generation by transition metal chloride modified titania,
Chem. Eur. J., 6 (2000) 379–384.
- H. Kisch, L. Zang, C. Lange, W F. Maier, C. Antonius, D. Meissner,
Modified, amorphous titania—a hybrid semiconductor for
detoxification and current generation by visible light, Angew.
Chem. Int. Ed., 37 (1998) 3034–3036.
- Z. Zhang, P.A. Maggard, Investigation of photocatalyticallyactive
hydrated forms of amorphous titania,
TiO2·nH2O,
J. Photochem. Photobiol., A, 186 (2007) 8–13.
- N.C. Neyt, D.L. Riley, Application of reactor engineering
concepts in continuous flow chemistry: a review, React. Chem.
Eng., 6 (2021) 1295–1326.
- D. Wang, M.A. Mueses, J.A.C. Márquez, F. Machuca-Martínez,
I. Grčić, R.P.M. Moreira, G.L. Puma, Engineering and modeling
perspectives on photocatalytic reactors for water treatment,
Water Res., 202 (2021) 117421, doi: 10.1016/j.watres.2021
.117421.
- M. Pelzer, S.L. Pirard, C.A. Páez, J.C. Monbaliu, B. Heinrichs,
Development of a continuous fluidic reactor for the
photocatalytic treatment of liquid effluents, J. Nanotechnol.
Mater. Sci., 7 (2019) 1–19.
- H.-J. Choi, D.-Y. Yoo, G.-J. Park, J.-J. Park, Photocatalytic
high-performance fiber-reinforced cement composites with
white Portland cement, titanium dioxide, and surface treated
polyethylene fibers, J. Mater. Res. Technol., 15 (2021) 785–800.
- C.M. Ling, A.R. Mohamed, S. Bhatia, Performance of
photocatalytic reactors using immobilized TiO2 film for the
degradation of phenol and methylene blue dye present in
water stream, Chemosphere, 57 (2004) 547–554.
- M. Abbas, M. Trari, Contribution of photocatalysis for the
elimination of Methyl Orange (MO) in aqueous medium using
TiO2 catalyst, optimization of the parameters and kinetics
modeling, Desal. Water Treat., 214 (2021) 413–419.
- Z. Li, X. Chen, M. Wang, X. Zhang, L. Liao, T. Fang, B. Li,
Photocatalytic degradation of Congo red by using the Cu2O/α-Fe2O3 composite catalyst, Desal. Water Treat., 215 (2021)
222–231.
- N.M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Kinetics
of heterogeneous photocatalytic degradation of reactive dyes
in an immobilized TiO2 photocatalytic reactor, J. Colloid
Interface Sci., 295 (2006) 159–164.
- R.A. Damodar, T. Swaminathan, Performance evaluation of
a continuous flow immobilized rotating tube photocatalytic
reactor (IRTPR) immobilized with TiO2 catalyst for azo dye
degradation, Chem. Eng. J., 144 (2008) 59–66.
- S. Mozia, M. Tomaszewska, A.W. Morawski, Photodegradation
of azo dye Acid Red 18 in a quartz labyrinth flow reactor with
immobilized TiO2 bed, Dyes Pigm., 75 (2007) 60–66.
- A.R. Khataee, A.R. Amani-Ghadim, M. Rastegar Farajzade,
O. Valinazhad Ourang, Photocatalytic activity of nanostructured
TiO2-modified white cement, J. Exp. Nanosci.,
6 (2011) 138−148.
- S. Feng, J. Song, F. Li, X. Fu, H. Guo, J. Zhu, Q. Zeng,
X. Peng, X. Wang, Y. Ouyang, F. Li, Photocatalytic properties,
mechanical strength and durability of TiO2/cement composites
prepared by a spraying method for removal of organic
pollutants, Chemosphere, 254 (2020) 126813, doi: 10.1016/j.chemosphere.2020.126813.
- K. Natarajan, T.S. Natarajan, H.C. Bajaj, R.J. Tayade,
Photocatalytic reactor based on UV-LED/TiO2 coated quartz
tube for degradation of dyes, Chem. Eng. J., 178 (2011) 40–49.
- ASTM International, C150, Standard Specification for Portland
Cement, 2005.
- ASTM International, C1240, Standard Specification for Silica
Fume Used in Cementitious Mixtures, 2020.
- ASTM International, C494/C494M, Standard Specification for
Chemical Admixtures for Concrete, 2019.
- ASTM International, C109/C109M, Standard Test Method
for Compressive Strength of Hydraulic Cement Mortars
(Using 2-in. or [50-mm] Cube Specimens), 2013.
- ASTM International, C348, Standard Test Method for Flexural
Strength of Hydraulic-Cement Mortars, 2021.
- ASTM International, C944/C944M, Standard Test Method for
Abrasion Resistance of Concrete or Mortar Surfaces by the
Rotating-Cutter Method, 2019.
- A. Mohagheghian, S.-A. Karimi, J.-K. Yang, M. Shirzad-Siboni,
Photocatalytic degradation of a textile dye by illuminated
tungsten oxide nanopowder, J. Adv. Oxid. Technol., 18 (2015)
61–68.
- L. Lu, R. Shan, Y. Shi, S. Wang, H. Yuan, A novel TiO2/biochar
composite catalysts for photocatalytic degradation of methyl
orange, Chemosphere, 222 (2019) 391–398.
- S. Feng, F. Liu, X. Fu, X. Peng, J. Zhu, Q. Zeng, J. Song,
Photocatalytic performances and durability
of TiO2/cement
composites prepared by a smear method for organic wastewater
degradation, Ceram. Int., 45 (2019) 23061–23069.
- H. Anwer, A. Mahmood, J. Lee, K.-H. Kim, J.-W. Park,
A.C.K. Yip, Photocatalysts for degradation of dyes in industrial
effluents: opportunities and challenges, Nano Res., 12 (2019)
955–972.
- D.S. de Sá, L.E. Vasconcellos, J.R. de Souza, B.A. Marinkovic,
T. Del Rosso, D. Fulvio, D. Maza, A. Massi, O. Pandoli,
Intensification of photocatalytic degradation of organic
dyes and phenol by scale-up and numbering-up of mesoand
microfluidic TiO2 reactors for wastewater treatment,
J. Photochem. Photobiol., A, 364 (2018) 59–75.
- L. Lei, N. Wang, X.M. Zhang, Q. Tai, D.P. Tsai, H.L.W. Chan,
Optofluidic planar reactors for photocatalytic water treatment
using solar energy, Biomicrofluidics, 4 (2010) 043004,
doi: 10.1063/1.3491471.
- N. Wang, L. Lei, X.M. Zhang, Y.H. Tsang, Y. Chen, H.L.W. Chan,
A comparative study of preparation methods of nanoporous
TiO2 films for microfluidic photocatalysis, Microelectron. Eng.,
88 (2011) 2797–2799.