References
- M.S.S. Abujazar, S. Fatihah, A.E. Kabeel, S. Sharil, S.S. Abu Amr,
Evaluation quality of desalinated water derived from inclined
copper-stepped solar still, Desal. Water Treat., 131 (2018) 83–95.
- A.F. Mashaly, A.A. Alazba, A.M. Al-Awaadh, M.A. Mattar,
Predictive model for assessing and optimizing solar still
performance using artificial neural network under hyper arid
environment, Sol. Energy, 118 (2015) 41–58.
- B. Leveque, J.B. Burnet, S. Dorner, F. Bichai, Impact of climate
change on the vulnerability of drinking water intakes in a
northern region, Sustainable Cities Soc., 66 (2021) 102656,
doi: 10.1016/j.scs.2020.102656.
- S.S. Ray, R.K. Verma, A. Singh, S. Myung, Y.-I. Park, I.-C. Kim,
H.K. Lee, Y.-N. Kwon, Exploration of time series model for
predictive evaluation of long-term performance of membrane
distillation desalination, Process Saf. Environ. Prot., 160 (2022)
1–12, doi: 10.1016/j.psep.2022.01.058.
- S.W. Sharshir, G. Peng, L. Wu, N. Yang, F.A. Essa,
A.H. Elsheikh, S.I.T. Mohamed, A.E. Kabeel, Enhancing the
solar still performance using nanofluids and glass cover
cooling: experimental study, Appl. Therm. Eng., 113 (2017)
684–693.
- K. Rhoden, J. Alonso, M. Carmona, M. Pham, A.N. Barnes,
Twenty years of waterborne and related disease reports in
Florida, USA, One Health, 13 (2021) 100294, doi: 10.1016/j.onehlt.2021.100294.
- S. Nazari, M. Bahiraei, H. Moayedi, H. Safarzadeh, A proper
model to predict energy efficiency, exergy efficiency, and
water productivity of a solar still via optimized neural
network, J. Cleaner Prod., 277 (2020) 123232, doi: 10.1016/j.jclepro.2020.123232.
- S. Khanmohammadi, S. Khanjani, Experimental study
to improve the performance of solar still desalination by
hydrophobic condensation surface using cold plasma
technology, Sustainable Energy Technol. Assess., 45 (2021)
101129, doi: 10.1016/j.seta.2021.101129.
- A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Advances in
seawater desalination technologies, Desalination, 221 (2008)
47–69.
- S.K. Suraparaju, R. Dhanusuraman, S.K. Natarajan, Performance
evaluation of single slope solar still with novel pond fibres,
Process Saf. Environ. Prot., 154 (2021) 142–154.
- O. Bait, Exergy, environ–economic and economic analyses of a
tubular solar water heater assisted solar still, J. Cleaner Prod.,
212 (2019) 630–646.
- A.E. Kabeel, R. Sathyamurthy, A.M. Manokar, S.W. Sharshir,
F.A. Essa, A.H. Elshiekh, Experimental study on tubular solar
still using graphene oxide nano particles in phase change
material (NPCM’s) for fresh water production, J. Energy
Storage, 28 (2020) 101204, doi: 10.1016/j.est.2020.101204.
- M. Mukherjee, S. Roy, K. Bhowmick, S. Majumdar, I. Prihatiningtyas,
B. Van der Bruggen, P. Mondal, Development of high
performance pervaporation desalination membranes: a brief
review, Process Saf. Environ. Prot., 159 (2022) 1092–1104.
- WWAP, The United Nations World Water Development Report
2015: Water For a Sustainable World, Paris, 2016. Available at:
http://www.unesco.org/new/en/natural-sciences/environment/
water/wwap/wwdr/2015-water-for-a-sustainable-world/
- L. Mu, L. Chen, L. Lin, Y.H. Park, H. Wang, P. Xu, K. Kota,
S. Kuravi, An overview of solar still enhancement approaches
for increased freshwater production rates from a thermal
process perspective, Renewable Sustainable Energy Rev.,
150 (2021) 111458, doi: 10.1016/j.rser.2021.111458.
- A.E. Kabeel, S.A. El-Agouz, R. Sathyamurthy, T. Arunkumar,
Augmenting the productivity of solar still using jute cloth
knitted with sand heat energy storage, Desalination, 443 (2018)
122–129.
- N. Najid, S. Fellaou, S. Kouzbour, B. Gourich, A. Ruiz-García,
Energy and environmental issues of seawater reverse osmosis
desalination considering boron rejection: a comprehensive
review and a case study of exergy analysis, Process Saf.
Environ. Prot., 156 (2021) 373–390.
- R. Lokk, S.M. Alsadaie, I.M. Mujtaba, Dynamic simulation of
once-through multistage flash (MSF-OT) desalination process:
effect of seawater temperature on the fouling mechanism in
the heat exchangers, Comput. Chem. Eng., 155 (2021) 107515,
doi: 10.1016/j.compchemeng.2021.107515.
- H. Lv, Y. Wang, L. Wu, Y. Hu, Numerical simulation and
optimization of the flash chamber for multi-stage flash
seawater desalination, Desalination, 465 (2019) 69–78.
- A. Darmawan, L. Karlina, I. Khairunnisak, R.E. Saputra,
C. Azmiyawati, Y. Astuti, A.P. Noorita, Hydrophobic
silica thin film derived from dimethyldimethoxysilanetetraethylorthosilicate
for desalination, Thin Solid Films,
734 (2021) 138865, doi: 10.1016/j.tsf.2021.138865.
- H. You, X. Zhang, D. Zhu, C. Yang, P. Chammingkwan,
T. Taniike, Advantages of polydopamine coating in the design
of ZIF-8-filled thin-film nanocomposite (TFN) membranes for
desalination, Colloids Surf., A, 629 (2021) 127492, doi: 10.1016/j.colsurfa.2021.127492.
- B.S. Al-Anzi, A. Al-Rashidi, L. Abraham, J. Fernandes,
A. Al-Sheikh, A. Alhazza, Brine management from desalination
plants for salt production utilizing high current density
electrodialysis-evaporator hybrid system: a case study in
Kuwait, Desalination, 498 (2021) 114760, doi: 10.1016/j.desal.2020.114760.
- G. Zheng, J. Jiang, X. Wang, W. Li, J. Liu, G. Fu, L. Lin, Nanofiber
membranes by multi-jet electrospinning arranged as arc-array
with sheath gas for electrodialysis applications, Mater. Des.,
189 (2020) 108504, doi: 10.1016/j.matdes.2020.108504.
- X. Huang, T. Ke, Y. Li, X. Ling, Experimental investigation and
optimization of total energy consumption in humidificationdehumidification
system, Energy Procedia, 158 (2019)
3488–3493.
- M.M. Farid, S. Parekh, J.R. Selman, S. Al-Hallaj, Solar
desalination with a humidification-dehumidification cycle:
mathematical modeling of the unit, Desalination, 151 (2003)
153–164.
- S.M. Parsa, A. Rahbar, M.H. Koleini, S. Aberoumand, M. Afrand,
M. Amidpour, A renewable energy-driven thermoelectricutilized
solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and
desalination, Desalination, 480 (2020) 114354, doi: 10.1016/j.desal.2020.114354.
- S. Sethi, S. Walker, J. Drewes, P. Xu, Existing and emerging
concentrate minimization and disposal practices for membrane
systems, Florida Water Resour. J., 38 (2006) 40–45.
- M.S.S. Abujazar, S. Fatihah, A.E. Kabeel, Seawater desalination
using inclined stepped solar still with copper trays in a wet
tropical climate, Desalination, 423 (2017) 141–148.
- A. Cipollina, E. Tzen, V. Subiela, M. Papapetrou, J. Koschikowski,
R. Schwantes, Renewable energy desalination: performance
analysis and operating data of existing RES desalination
plants, Desal. Water Treat., 55 (2015) 3126–3146.
- A. El-Bahi, D. Inan, Analysis of a parallel double glass solar still
with separate condenser, Renewable Energy, 17 (1999) 509–521.
- G.M. Ayoub, L. Malaeb, Economic feasibility of a solar still
desalination system with enhanced productivity, Desalination,
335 (2014) 27–32.
- M.S.S. Abujazar, S. Fatihah, E.R. Lotfy, A.E. Kabeel, S. Sharil,
Performance evaluation of inclined copper-stepped solar still
in a wet tropical climate, Desalination, 425 (2018) 94–103.
- H. Sharon, Energy, exergy, environmental benefits and
economic aspects of novel hybrid solar still for sustainable
water distillation, Process Saf. Environ. Prot., 150 (2021) 1–21,
doi: 10.1016/j.psep.2021.04.003.
- F.A. Essa, A.S. Abdullah, Z.M. Omara, Improving the
performance of tubular solar still using rotating drum –
experimental and theoretical investigation, Process Saf.
Environ. Prot., 148 (2021) 579–589.
- A.A. AL-Karaghouli, W.E. Alnaser, Experimental comparative
study of the performances of single and double basin solarstills,
Appl. Energy, 77 (2004) 317–325.
- B.A. Akash, M.S. Mohsen, W. Nayfeh, Experimental study
of the basin type solar still under local climate conditions,
Energy Convers. Manage., 41 (2000) 883–890.
- F.F. Tabrizi, A.Z. Sharak, Experimental study of an integrated
basin solar still with a sandy heat reservoir, Desalination,
253 (2010) 195–199.
- O.O. Badran, Experimental study of the enhancement parameters
on a single slope solar still productivity, Desalination,
209 (2007) 136–143.
- A.E. Kabeel, M. Abdelgaied, A. Eisa, Enhancing the performance
of single basin solar still using high thermal conductivity
sensible storage materials, J. Cleaner Prod., 183 (2018) 20–25.
- F. Ketabchi, S. Gorjian, S. Sabzehparvar, Z. Shadram,
M.S. Ghoreishi, H. Rahimzadeh, Experimental performance
evaluation of a modified solar still integrated with a cooling
system and external flat-plate reflectors, Sol. Energy, 187 (2019)
137–146.
- V. Velmurugan, S. Pandiarajan, P. Guruparan, L.H. Subramanian,
C.D. Prabaharan, K. Srithar, Integrated performance of stepped
and single basin solar stills with mini solar pond, Desalination,
249 (2009) 902–909.
- D. Kumar, P. Kumar, Mathematical modeling of conventional
solar still coupled with solar air heater, IJISET – Int. J. Innovative
Sci. Eng. Technol., 1 (2014) 379–385.
- A.F. Mashaly, A.A. Alazba, ANFIS modeling and sensitivity
analysis for estimating solar still productivity using measured
operational and meteorological parameters, Water Sci.
Technol. Water Supply, 18 (2018) 1437–1448.
- S. Shoeibi, N. Rahbar, A. Abedini Esfahlani, H. Kargarsharifabad,
Improving the thermoelectric solar still performance by using
nanofluids– experimental study, thermodynamic modeling
and energy matrices analysis, Sustainable Energy Technol.
Assess., 47 (2021) 101339, doi: 10.1016/j.seta.2021.101339.
- M. Keshtkar, M. Eslami, K. Jafarpur, Effect of design parameters
on performance of passive basin solar stills considering
instantaneous ambient conditions: a transient CFD modeling,
Sol. Energy, 201 (2020) 884–907.
- M. Feng, Y. Tao, A Mathematical Model for the Performance of
a Horizontal Convective Solar Still, ASME 2005 Summer Heat
Transfer Conference collocated with the ASME 2005 Pacific
Rim Technical Conference and Exhibition on Integration and
Packaging of MEMS, NEMS, and Electronic Systems, 2015,
pp. 1–9.
- Y.A.F. El-Samadony, A.E. Kabeel, Theoretical estimation
of the optimum glass cover water film cooling parameters
combinations of a stepped solar still, Energy, 68 (2014) 744–750.
- M. Mohanraj, S. Jayaraj, C. Muraleedharan, Applications of
artificial neural networks for refrigeration,
air-conditioning
and heat pump systems – a review, Renewable Sustainable
Energy Rev., 16 (2012) 1340–1358.
- A.H. Elsheikh, V.P. Katekar, O.L. Muskens, S.S. Deshmukh,
M.A. Elaziz, S.M. Dabour, Utilization of LSTM neural network
for water production forecasting of a stepped solar still with
a corrugated absorber plate, Process Saf. Environ. Prot.,
148 (2021) 273–282.
- G. Sadeghi, A.L. Pisello, S. Nazari, M. Jowzi, F. Shama, Empirical
data-driven multi-layer perceptron and radial basis function
techniques in predicting the performance of nanofluid-based
modified tubular solar collectors, J. Cleaner Prod., 295 (2021)
126409, doi: 10.1016/j.jclepro.2021.126409.
- P. Das, A. Debnath, Reactive orange 12 dye adsorption onto
magnetically separable CaFe2O4 nanoparticles synthesized by
simple chemical route: kinetic, isotherm and neural network
modeling, Water Pract. Technol., 16 (2021, doi: 10.2166/wpt.2021.064.
- G. Sadeghi, S. Nazari, M. Ameri, F. Shama, Energy and
exergy evaluation of the evacuated tube solar collector using
Cu2O/water nanofluid utilizing ANN methods, Sustainable
Energy Technol. Assess., 37 (2020) 100578, doi: 10.1016/j.seta.2019.100578.
- G. Sadeghi, M. Najafzadeh, M. Ameri, M. Jowzi, A case study
on copper-oxide nanofluid in a back pipe vacuum tube solar
collector accompanied by data mining techniques, Case Stud.
Therm. Eng., 32 (2022) 101842, doi:10.1016/j.csite.2022.101842.
- G. Sadeghi, M. Najafzadeh, M. Ameri, Thermal characteristics
of evacuated tube solar collectors with coil inside: an
experimental study and evolutionary algorithms, Renewable
Energy, 151 (2020), doi:10.1016/j.renene.2019.11.050.
- A. Debnath, M. Majumder, M. Pal, N.S. Das, K.K. Chattopadhyay,
B. Saha, Enhanced Adsorption of hexavalent chromium onto
magnetic calcium ferrite nanoparticles: kinetic, isotherm, and
neural network modeling, J. Dispersion Sci. Technol., 37 (2016)
1141100, doi: 10.1080/01932691.2016.1141100.
- G. Sadeghi, M. Najafzadeh, H. Safarzadeh, Utilizing
gene-expression programming in modelling the thermal
performance of evacuated tube solar collectors, J. Energy
Storage, 30 (2020) 101546, doi:10.1016/j.est.2020.101546.
- M. Bhowmik, K. Deb, A. Debnath, B. Saha, Mixed phase Fe2O3/
Mn3O4 magnetic nanocomposite for enhanced adsorption of
methyl orange dye: neural network modeling and response
surface methodology optimization, Appl. Organomet. Chem.,
32 (2018), doi: 10.1002/aoc.4186.
- R. Eke, H. Demircan, Performance analysis of a multi crystalline
Si photovoltaic module under Mugla climatic conditions in
Turkey, Energy Convers. Manage., 65 (2013) 580–586.
- R. Ata, Artificial neural networks applications in wind energy
systems: a review, Renewable Sustainable Energy Rev.,
49 (2015) 534–562.
- N.I. Santos, A.M. Said, D.E. James, N.H. Venkatesh, Modeling
solar still production using local weather data and artificial
neural networks, Renewable Energy, 40 (2012) 71–79.
- M.A. Hamdan, R.A. Haj Khalil, E.A.M. Abdelhafez, Comparison
of neural network models in the estimation of the performance
of solar still under Jordanian climate, J. Clean Energy Technol.,
1 (2014) 238–242.
- R. Barzegar, A. Asghari Moghaddam, J. Adamowski, B. Ozga-
Zielinski, Multi-step water quality forecasting using a boosting
ensemble multi-wavelet extreme learning machine model,
Stochastic Environ. Res. Risk Assess., 32 (2018) 799–813.
- A. Mosavi, F.S. Hosseini, B. Choubin, Ensemble Boosting and
Bagging Based Machine Learning Models for Groundwater
Potential Prediction Content courtesy of Springer Nature,
Terms of Use Apply, Rights Reserved, Content Courtesy of
Springer Nature, Terms of Use Apply, Rights Reserved, 2021,
pp. 23–37.
- D.H. Nguyen, X. Hien Le, J.Y. Heo, D.H. Bae, Development of an
extreme gradient boosting model integrated with evolutionary
algorithms for hourly water level prediction, IEEE Access,
9 (2021) 125853–125867.
- M.S.S. Abujazar, S. Fatihah, I.A. Ibrahim, A.E. Kabeel, S. Sharil,
Productivity modelling of a developed inclined stepped solar
still system based on actual performance and using a cascaded
forward neural network model, J. Cleaner Prod., 170 (2017)
147–159.
- T. Khatib, A. Mohamed, K. Sopian, M. Mahmoud, Solar energy
prediction for Malaysia using artificial neural networks, Int. J.
Photoenergy, 2012 (2012) 419504, doi: 10.1155/2012/419504.
- B.I. Ismail, Design and performance of a transportable
hemispherical solar still, Renewable Energy, 34 (2009) 145–150.
- A. Hanson, W. Zachritz, K. Stevens, L. Mimbela, R. Polka,
L. Cisneros, Distillate water quality of a single-basin solar still:
laboratory and field studies, Sol. Energy, 76 (2004) 635–645.
- AccuWeather, Malaysia Weather, 2016. Available at: https://www.accuweather.com/en/my/malaysia-weather (Accessed
December 23, 2016).
- V. Velmurugan, K.J. Naveen Kumar, T. Noorul Haq, K. Srithar,
Performance analysis in stepped solar still for effluent
desalination, Energy, 34 (2009) 1179–1186.
- R.S. Hansen, C.S. Narayanan, K.K. Murugavel, Performance
analysis on inclined solar still with different new wick
materials and wire mesh, Desalination, 358 (2015) 1–8.
- D. Opitz, R. Maclin, Popular ensemble methods: an empirical
study, J. Artif. Intell. Res., 11 (1999) 169–198.
- Y. Freund, R.E. Schapire, A desicion-theoretic generalization
of on-line learning and an application to boosting BT –
computational learning theory, Comput. Learn Theory,
904 (2005) 23–37.
- S. Jhaveri, I. Khedkar, Y. Kantharia, S. Jaswal, Success Prediction
Using Random Forest, CatBoost, XGBoost and AdaBoost for
Kickstarter Campaigns, 2019 3rd International Conference on
Computing Methodologies and Communication (ICCMC),
IEEE, Erode, India, 2019, pp. 1170–1173. Available at doi:10.1109/ICCMC.2019.8819828.
- F. Anggraeni, D. Adytia, A.W. Ramadhan, Forecasting of Wave
Height Time Series Using AdaBoost and XGBoost, Case Study
in Pangandaran, Indonesia, 2021 International Conference on
Data Science and Its Applications (ICoDSA), IEEE, Bandung,
Indonesia, 2021, pp. 97–101. Available at doi:10.1109/ICoDSA53588.2021.9617524.
- R. Punmiya, S. Choe, Energy theft detection using gradient
boosting theft detector with feature
engineering-based
preprocessing, IEEE Trans. Smart Grid, 10 (2019) 2326–2329.
- S. Lee, T.P. Vo, H.T. Thai, J. Lee, V. Patel, Strength prediction
of concrete-filled steel tubular columns using categorical
gradient boosting algorithm, Eng. Struct., 238 (2021) 112109,
doi:10.1016/j.engstruct.2021.112109.
- H. Lu, S.P. Karimireddy, N. Ponomareva, V. Mirrokni,
Accelerating Gradient Boosting Machine, Int. Conf. Arti Cial
Intell. Stat. (AISTATS), 2020, pp. 1–10. Available at: http://arxiv.
org/abs/1903.08708.
- E.K. Sahin, Comparative analysis of gradient boosting
algorithms for landslide susceptibility mapping, Geocarto Int.,
37 (2022) 2441–2465.
- R. Costache, Q.B. Pham, M. Avand, N.T. Thuy Linh, M. Vojtek,
J. Vojteková, S. Lee, D.N. Khoi, P.T. Thao Nhi, T.D. Dung, Novel
hybrid models between bivariate statistics, artificial neural
networks and boosting algorithms for flood susceptibility
assessment, J. Environ. Manage., 265 (2020) 110485,
doi:10.1016/j.jenvman.2020.110485.
- A. Natekin, A. Knoll, Gradient boosting machines, a tutorial,
Front. Neurorobot., 7 (2013) 1–21.
- A. Ibrahem Ahmed Osman, A. Najah Ahmed, M.F. Chow,
Y. Feng Huang, A. El-Shafie, extreme gradient boosting
(XGBoost) model to predict the groundwater levels in
Selangor Malaysia, Ain Shams Eng. J., 12 (2021) 1545–1556.
- J. Cao, Z. Zhang, J. Du, L. Zhang, Y. Song, G. Sun, Multigeohazards
susceptibility mapping based on machine
learning—a case study in Jiuzhaigou, China, Nat. Hazards,
102 (2020) 851–871.
- G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
T.Y. Liu, LightGBM: a highly efficient gradient boosting
decision tree, 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017,
pp. 3147–3155.
- E.K. Sahin, Assessing the predictive capability of ensemble tree
methods for landslide susceptibility mapping using XGBoost,
gradient boosting machine, and random forest, SN Appl. Sci.,
2 (2020) 1–17.
- E. Al Daoud, Comparison between XGBoost, LightGBM and
CatBoost using a home credit dataset, World Acad. Sci. Eng.
Technol., Int. J. Comput. Inf. Eng., 13 (2019) 6–10.
- M. Tang, Q. Zhao, S.X. Ding, H. Wu, L. Li, W. Long, B. Huang,
An improved LightGBM algorithm for online fault detection
of wind turbine gearboxes, Energies, 13 (2020) 13040807,
doi: 10.3390/en13040807.
- A. Haithm, A.Y. Saleh, A. Odabaş, Comparison of gradient
boosting decision tree algorithms for CPU performance, J. Inst.
Sci. Technol., 37 (2021) 157–168.
- Y. Wang, T. Wang, Application of improved LightGBM model
in blood glucose prediction, Appl. Sci., 10 (2020), doi: 10.3390/app10093227.