References

  1. A.C.S. Batalhão, J.H.P.P. Eustachio, A.C.F. Caldana, A.R. Choupina, Chapter 9 – Economic Approaches to Sustainable Development: Exploring the Conceptual Perspective and the Indicator Initiatives, P. Singh, P. Verma, D. Perrotti, K.K. Srivastava, Ed., Environmental Sustainability and Economy, Elsevier, Cambridge, MA, 2021, pp. 151–169.
  2. K. Sathiasivan, S. Swaminathan, J. Ramaswamy, M. Rajesh, Investigation of hydrodynamics of inverse fluidized bed reactor (IFBR) for struvite (NH4MgPO4·6H2O) recovery from urban wastewater, Chem. Pap., 76 (2021) 361–372.
  3. V. Dhawan, Water and Agriculture in India, Background Paper for the South Asia Expert Panel During the Global Forum for Food and Agriculture (GFFA), Federal Ministry of Food and Agriculture, Hamburg, Germany, 2017.
  4. J.S. Guest, S.J. Skerlos, J.L. Barnard, M.B. Beck, G.T. Daigger, H. Hilger, S.J. Jackson, K. Karvazy, L. Kelly, L. Macpherson, J.R. Mihelcic, A. Pramanik, L. Raskin, M.C.M. Van Loosdrecht, D. Yeh, N.G. Love, A new planning and design paradigm to achieve sustainable resource recovery from wastewater, Environ. Sci. Technol., 43 (2009) 6126–6130.
  5. M. Latifian, J. Liu, B. Mattiassona, Struvite-based fertilizer and its physical and chemical properties, Environ. Technol., 33 (2012) 2691–2697.
  6. P. Battistoni, P. Pavan, M. Prisciandaro, F. Cecchi, Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants, Water Res., 34 (2000) 3033–3041.
  7. B. Bergmans, Struvite Recovery from Digested Sludge at WWTP West, MS Thesis, Delft University of Technology, Netherlands, 2011.
  8. K. Salazar, M.K. McNutt, Mineral Commodity Summaries 2012, US Geological Survey, Reston, Virginia, 2012, pp. 58–60.
  9. T. Cai, S.Y. Park, Y. Li, Nutrient recovery from wastewater streams by microalgae: status and prospects, Renewable Sustainable Energy Rev., 19 (2013) 360–369.
  10. R. Kumar, P. Pal, Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review, Environ. Sci. Pollut. Res., 22 (2015) 17453–17464.
  11. J.J. Schroder, D. Cordell, A.L. Smit, A. Rosemarin, Sustainable Use of Phosphorus: EU Tender ENV, B1/ETU/2009/0025, Plant Research International, Wageningen, Netherlands, 2010.
  12. G.K. Morse, S.W. Brett, J.A. Guy, J.N. Lester, Review: phosphorus removal and recovery technologies, Sci. Total Environ., 212 (1998) 69–81.
  13. L. Shu, P. Schneider, V. Jegatheesan, J. Johnson, An economic evaluation of phosphorus recovery as struvite from digester supernatant, Bioresour. Technol., 97 (2006) 2211–2216.
  14. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (2019) 145–155.
  15. Y. Yang, X. Shi, W. Ballent, B.K. Mayer, Biological phosphorus recovery: review of current progress and future needs, Water Environ. Res., 89 (2017) 2122–2135.
  16. S.Y. Gebremariam, M.W. Beutel, D. Christian, T.F. Hess, Research advances and challenges in the microbiology of enhanced biological phosphorus removal—a critical review, Water Environ. Res., 83 (2011) 195–219.
  17. Z. Yuan, S. Pratt, D.J. Batstone, Phosphorus recovery from wastewater through microbial processes, Curr. Opin. Biotechnol., 23 (2012) 878–883.
  18. A. Bateman, D. Van Der Horst, D. Boardman, A. Kansal, C. Carliell-Marquet, Closing the phosphorus loop in England: the spatio-temporal balance of phosphorus capture from manure versus crop demand for fertiliser, Resour. Conserv. Recycl., 55 (2011) 1146–1153.
  19. M. Zaman, M. Kim, G. Nakhla, A. Singh, F. Yang, Enhanced biological phosphorus removal using thermal alkaline hydrolyzed municipal wastewater biosolids, J. Environ. Sci., 86 (2019) 164–174.
  20. L. Spinosa, From sludge to resources through biosolids, Water Sci. Technol., 50 (2004) 1–9.
  21. M.K. Winkler, L. Straka, New directions in biological nitrogen removal and recovery from wastewater, Curr. Opin. Biotechnol., 57 (2019) 50–55.
  22. C. Wan, S. Ding, C. Zhang, X. Tan, W. Zou, X. Liu, X. Yang, Simultaneous recovery of nitrogen and phosphorus from sludge fermentation liquid by zeolite adsorption: mechanism and application, Sep. Purif. Technol., 180 (2017) 1–12.
  23. G. Provolo, F. Perazzolo, G. Mattachini, A. Finzi, E. Naldi, E. Riva, Nitrogen removal from digested slurries using a simplified ammonia stripping technique, Waste Manage., 69 (2017) 154–161.
  24. K. Yetilmezsoy, Z. Sapci-Zengin, Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer, J. Hazard. Mater., 166 (2009) 260–269.
  25. M.I.H. Bhuiyan, D.S. Mavinic, R.D. Beckie, A solubility and thermodynamic study of struvite, Environ. Technol., 28 (2007) 1015–1026.
  26. R. Cabeza, B. Steingrobe, W. Römer, N. Claassen, Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments, Nutr. Cycling Agroecosyst., 91 (2011) 173–184.
  27. P.J. Talboys, J. Heppell, T. Roose, J.R. Healey, D.L. Jones, P.J. Withers, Struvite: a slow-release fertiliser for sustainable phosphorus management?, Plant Soil, 401 (2016) 109–123.
  28. L. Shu, P. Schneider, V. Jegatheesan, J. Johnson, An economic evaluation of phosphorus recovery as struvite from digester supernatant, Bioresour. Technol., 97 (2006) 2211–2216.
  29. J.D. Doyle, K. Oldring, J. Churchley, C. Price, S.A. Parsons, Chemical control of struvite precipitation, J. Environ. Eng., 129 (2003) 419–426.
  30. Y. Ueno, M. Fujii, Three years experience of operating and selling recovered struvite from full-scale plant, Environ. Technol., 22 (2010) 1373–1381.
  31. M.M. Rahman, M.A.M. Salleh, U. Rashid, A. Ahsan, M.M. Hossain, C.S. Ra, Production of slow release crystal fertilizer from wastewaters through struvite crystallization – a review, Arabian J. Chem., 7 (2014) 139–155.
  32. J.D. Doyle, S.A. Parsons, Struvite formation, control and recovery, Water Res., 36 (2002) 3925–3940.
  33. N.C. Bouropoulos, P.G. Koutsoukos, Spontaneous precipitation of struvite from aqueous solutions, J. Cryst. Growth, 213 (2000) 381–388.
  34. J.D. Doyle, S.A. Parsons, Struvite formation, control and recovery, Water Res., 36 (2002) 3925–3940.
  35. R. Sharp, E. Vadiveloo, R. Fergen, M. Moncholi, P. Pitt, D. Wankmuller, R. Latimer, A theoretical and practical evaluation of struvite control and recovery, Water Environ. Res., 85 (2013) 675–686.
  36. D. Crutchik, J.M. Garrido, Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater, Water Sci. Technol., 64 (2011) 2460–2467.
  37. I. Kabdaşli, S.A. Parsons, O. Tünay, Effect of major ions on induction time of struvite precipitation, Croat. Chem. Acta, 79 (2006) 243–251.
  38. J.W. Mullin, Crystallization, Elsevier, Oxford, 2001.
  39. S. Regy, D. Mangin, J.P. Klein, J. Lieto, Phosphate Recovery by Struvite Precipitation in a Stirred Reactor, Phosphate Recovery in Wastewater by Crystallization, LAGEP: Internal Report, CEEP, Lyon, 2002, pp. 54–58.
  40. H. Saidou, A. Korchef, S. Ben Moussa, M. Ben Amor, Struvite precipitation by the dissolved CO2 degasification technique: impact of the airflow rate and pH, Chemosphere, 74 (2009) 338–343.
  41. M.M. Rahman, M.A.M. Salleh, U. Rashid, A. Ahsan, M.M. Hossain, C.S. Ra, Production of slow release crystal fertilizer from wastewaters through struvite crystallization – a review, Arabian J. Chem., 7 (2014) 139–155.
  42. N. Krishnamoorthy, B. Dey, Y. Unpaprom, R. Ramaraj, G.P. Maniam, N. Govindan, S. Jayaraman, T. Arunachalam, B. Paramasivan, Engineering principles and process designs for phosphorus recovery as struvite: a comprehensive review, J. Environ. Chem. Eng., 9 (2021) 105579, doi: 10.1016/j.jece.2021.105579.
  43. X.D. Hao, C.C. Wang, L. Lan, M.C.M. Van Loosdrecht, Struvite formation, analytical methods and effects of pH and Ca2+, Water Sci. Technol., 58 (2008) 1687–1692.
  44. A. Andrade, R.D. Schuiling, The chemistry of struvite crystallization, Min. J., 23 (2001) 37–46.
  45. K.N. Ohlinger, P.E., T.M. Young, E.D. Schroeder, Kinetics effects on preferential struvite accumulation in wastewater, J. Environ. Eng., 125 (1999) 730–737.
  46. I. Çelen, M. Türker, Recovery of ammonia as struvite from anaerobic digester effluents, Environ. Technol. (United Kingdom)., 22 (2001) 1263–1272.
  47. I. Stratful, M.D. Scrimshaw, J.N. Lester, Conditions influencing the precipitation of magnesium ammonium phosphate, Water Res., 35 (2001) 4191–4199.
  48. P. Battistoni, A. De Angelis, P. Pavan, M. Prisciandaro, F. Cecchi, Phosphorus removal from a real anaerobic supernatant by struvite crystallization, Water Res., 35 (2001) 2167–2178.
  49. Z. Ye, Y. Shen, X. Ye, Z. Zhang, S. Chen, J. Shi, Phosphorus recovery from wastewater by struvite crystallization: property of aggregates, J. Environ. Sci., 26 (2014) 991–1000.
  50. A. Matynia, B. Wierzbowska, N. Hutnik, A. Mazienczuk, A. Kozik, K. Piotrowski, Separation of struvite from mineral fertilizer industry wastewater, Procedia Environ. Sci., 18 (2013) 766–775.
  51. K. Yetilmezsoy, Z. Sapci-Zengin, Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer, J. Hazard. Mater., 166 (2009) 260–269.
  52. K. Yetilmezsoy, F. Ilhan, Z. Sapci-Zengin, S. Sakar, M.T. Gonullu, Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: a posttreatment study, J. Hazard. Mater., 162 (2009) 120–132.
  53. A. Kozik, N. Hutnik, A. Matynia, J. Gluzinska, K. Piotrowski, Recovery of phosphate (V) ions from liquid waste solutions containing organic impurities, Chemik, 65 (2011) 675–686.
  54. J. Koralewska, K. Piotrowski, B. Wierzbowska, A. Matynia, Kinetics of reaction-crystallization of struvite in the continuous draft tube magma type crystallizers-influence of different internal hydrodynamics, Chin. J. Chem. Eng., 17 (2009) 330–339.
  55. A. Matynia, B. Wierzbowska, N. Hutnik, A. Mazienczuk, A. Kozik, K. Piotrowski, Separation of struvite from mineral fertilizer industry wastewater, Procedia Environ. Sci., 18 (2013) 766–775.
  56. T. Zhang, L. Ding, H. Ren, Pretreatment of ammonium removal from landfill leachate by chemical precipitation, J. Hazard. Mater., 166 (2009) 911–915.
  57. R. Kumar, P. Pal, Turning hazardous waste into value-added products: production and characterization of struvite from ammoniacal waste with new approaches, J. Cleaner Prod., 43 (2013) 59–70.
  58. B. Liu, A. Giannis, J. Zhang, V.W.C. Chang, J.Y. Wang, Characterization of induced struvite formation from sourceseparated urine using seawater and brine as magnesium sources, Chemosphere, 93 (2013) 2738–2747.
  59. D. Kim, J. Kim, H.D. Ryu, S.I. Lee, Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater, Bioresour. Technol., 100 (2009) 74–78.
  60. K. Sathiasivan, J. Ramaswamy, M. Rajesh, Optimization studies on the production of struvite from human urine – waste into value, Desal. Water Treat., 155 (2019) 134–144.
  61. D.M. Rodrigues, R. do Amaral Fragoso, A.P. Carvalho, T. Hein, A.G. de Brito, Recovery of phosphates as struvite from urinediverting toilets: optimization of pH, Mg:PO4 ratio and contact time to improve precipitation yield and crystal morphology, Water Sci. Technol., 80 (2019) 1276–1286.
  62. Z. Li, X. Ren, J. Zuo, Y. Liu, E. Duan, J. Yang, P. Chen, Y. Wang, Struvite precipitation for ammonia nitrogen removal in 7-aminocephalosporanic acid wastewater, Molecules, 17 (2012) 2126–2139.
  63. J. Koralewska, K. Piotrowski, B. Wierzbowska, A. Matynia, Kinetics of reaction-crystallization of struvite in the continuous draft tube magma type crystallizers—influence of different internal hydrodynamics, Chin. J. Chem. Eng., 17 (2009) 330–339.
  64. AE. Durrant, M.D. Scrimshaw, I. Stratful, J.N. Lester, Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry, Environ. Technol., 20 (1999) 749–58.
  65. H.K. Aage, B.L. Andersen, A. Blom, I. Jensen, The solubility of struvite, J. Radioanal. Nucl. Chem., 223 (1997) 213–215.
  66. M. Hanhoun, L. Montastruc, C. Azzaro-Pantel, B. Biscans, M. Frèche, L. Pibouleau, Temperature impact assessment on struvite solubility product: a thermodynamic modeling approach, Chem. Eng. J., 167 (2011) 50–58.
  67. Y.H. Liu, J.H. Kwag, J.H. Kim, C.S. Ra, Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater, Desalination, 277 (2011) 364–369.
  68. M.I.H. Bhuiyan, D.S. Mavinic, F.A. Koch, Thermal decomposition of struvite and its phase transition, Chemosphere, 70 (2008) 1347–1356.
  69. B. Li, I. Boiarkina, W. Yu, H.M. Huang, T. Munir, G.Q. Wang, B.R. Young, Phosphorous recovery through struvite crystallization: challenges for future design, Sci. Total Environ., 648 (2019) 1244–1256.
  70. R. Kumar, P. Pal, Turning hazardous waste into value-added products: production and characterization of struvite from ammoniacal waste with new approaches, J. Cleaner Prod., 43 (2013) 59–70.
  71. S. Uludag-Demirer, A study on nutrient removal from municipal wastewater by struvite formation using Taguchi’s design of experiments, Environ. Eng. Sci., 25 (2008) 1–10.
  72. A. Uysal, S. Demir, E. Sayilgan, F. Eraslan, Z. Kucukyumuk, Optimization of struvite fertilizer formation from baker’s yeast wastewater: growth and nutrition of maize and tomato plants, Environ. Sci. Pollut. Res., 21 (2014) 3264–3274.
  73. B. Li, H.M. Huang, I. Boiarkina, W. Yu, Y.F. Huang, G.Q. Wang, B.R. Young, Phosphorus recovery through struvite crystallisation: recent developments in the understanding of operational factors, J. Environ. Manage., 248 (2019) 109254, doi: 10.1016/j.jenvman.2019.07.025.
  74. K.M. Hillman, R.C. Sims, Struvite formation associated with the microalgae biofilm matrix of a rotating algal biofilm reactor (RABR) during nutrient removal from municipal wastewater, Water Sci. Technol., 81 (2020) 644–655.
  75. L. Edahwati, R. Rendri Anggriawan, Recovery of phosphate and ammonium from dairy cow urine by struvite crystallization with vertical reactor, Int. J. Eco-Innovation Sci. Eng., 1 (2020) 30–35.
  76. S. Shim, S. Won, A. Reza, S. Kim, N. Ahmed, C. Ra, Design and optimization of fluidized bed reactor operating conditions for struvite recovery process from swine wastewater, Processes, 8 (2020) 422, doi: 10.3390/pr8040422.
  77. W. Gong, Y. Li, L. Luo, X. Luo, X. Cheng, H. Liang, Application of struvite-MAP crystallization reactor for treating cattle manure anaerobic digested slurry: nitrogen and phosphorus recovery and crystal fertilizer efficiency in plant trials, Int. J. Environ. Res. Public Health, 15 (2018) 1397, doi: 10.3390/ijerph15071397.
  78. P. Zamora, T. Georgieva, I. Salcedo, N. Elzinga, P. Kuntke, C.J.N. Buisman, Long-term operation of a pilot-scale reactor for phosphorus recovery as struvite from source-separated urine, J. Chem. Technol. Biotechnol., 92 (2017) 1035–1045.
  79. N. Hutnik, B. Wierzbowska, K. Piotrowski, A. Matynia, Effect of continuous crystallizer performance on struvite crystals produced in reaction crystallization from solutions containing phosphate (V) and zinc (II) ions, Braz. J. Chem. Eng., 33 (2016) 307–317.
  80. M. Cerrillo, J. Palatsi, J. Comas, J. Vicens, A. Bonmatí, Struvite precipitation as a technology to be integrated in a manure anaerobic digestion treatment plant – removal efficiency, crystal characterization and agricultural assessment, J. Chem. Technol. Biotechnol., 90 (2015) 1135–1143.
  81. S. Rhoton, M. Grau, C.J. Brouckaert, G. Gounden, C.A. Buckley, Field Operation of a Simple Struvite Reactor to Produce Phosphorus Fertiliser From Source-Separated Urine in eThekwini, WISA Biennal Conference 2014, 25–28 May, Mbombela, Mpumalanga, South Africa, 2014, pp. 1–5.
  82. M.P. Huchzermeier, W. Tao, Overcoming challenges to struvite recovery from anaerobically digested dairy manure, Water Environ. Res., 84 (2012) 34–41.
  83. Y.H. Song, G.L. Qiu, P. Yuan, X.Y. Cui, J.F. Peng, P. Zeng, L. Duan, L.C. Xiang, F. Qian, Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions, J. Hazard. Mater., 190 (2011) 140–149.
  84. M.M. Rahman, Y.H. Liu, J.H. Kwag, C.S. Ra, Recovery of struvite from animal wastewater and its nutrient leaching loss in soil, J. Hazard. Mater., 186 (2011) 2026–2030.
  85. K.S. Le Corre, E. Valsami-Jones, P. Hobbs, B. Jefferson, S.A. Parsons, Struvite crystallisation and recovery using a stainless steel structure as a seed material, Water Res., 41 (2007) 2449–2456.
  86. M. Ronteltap, M. Maurer, R. Hausherr, W. Gujer, Struvite precipitation from urine – influencing factors on particle size, Water Res., 44 (2010) 2038–2046.
  87. S. Shim, S. Won, A. Reza, S. Kim, N. Ahmed, C. Ra, Simultaneous removal of pollutants and recovery of nutrients from high-strength swine wastewater using a novel integrated treatment process, Animals,10 (2020) 835, doi: 10.3390/ani10050835.
  88. B. Kim, N. Jang, M. Lee, J.K. Jang, I.S. Chang, Microbial fuel cell driven mineral rich wastewater treatment process for circular economy by creating virtuous cycles, Bioresour. Technol., 320 (2021) 124254, doi: 10.1016/j.biortech.2020.124254.
  89. C.C. Wang, X.D. Hao, G.S. Guo, M.C.M. van Loosdrecht, Formation of pure struvite at neutral pH by electrochemical deposition, Chem. Eng. J., 159 (2010) 280–283.
  90. S. Ben Moussa, G. Maurin, C. Gabrielli, M. Ben Amor, Electrochemical precipitation of struvite, Electrochem. Solid-State Lett., 9 (2006) C97, doi: 10.1149/1.2189222.
  91. L. Pastor, D. Mangin, R. Barat, A. Seco, A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process, Bioresour. Technol., 99 (2008) 6285–6291.
  92. L. Kékedy-Nagy, M. Abolhassani, S.I.P. Bakovic, Z. Anari, J.P. Moore II, B.G. Pollet, L.F. Greenlee, Electroless production of fertilizer (struvite) and hydrogen from synthetic agricultural wastewaters, J. Am. Chem. Soc., 142 (2020) 18844–18858.
  93. X. Zhou, Y. Chen, An integrated process for struvite electrochemical precipitation and ammonia oxidation of sludge alkaline hydrolysis supernatant, Environ. Sci. Pollut. Res., 26 (2019) 2435–2444.
  94. X.Z. Li, Q.L. Zhao, X.D. Hao, Ammonium removal from landfill leachate by chemical precipitation, Waste Manage., 19 (1999) 409–415.
  95. I. Çelen, J.R. Buchanan, R.T. Burns, R. Bruce Robinson, D. Raj Raman, Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure, Water Res., 41 (2007) 1689–1696.
  96. C. Di Iaconi, M. Pagano, R. Ramadori, A. Lopez, Nitrogen recovery from a stabilized municipal landfill leachate, Bioresour. Technol., 101 (2010) 1732–1736.
  97. Y.J. Shih, R.R.M. Abarca, M.D.G. de Luna, Y.H. Huang, M.C. Lu, Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions, Chemosphere, 173 (2017) 466–473.
  98. H. Huang, P. Zhang, Z. Zhang, J. Liu, J. Xiao, F. Gao, Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology, J. Cleaner Prod., 127 (2016) 302–310.
  99. Ş. İrdemez, Z. Bingül, S. Kul, F.E. Torun, N. Demircioğlu, The effect of supporting electrolyte type and concentration on the phosphate removal from water by electrocoagulation method using iron electrodes, NOHU J. Eng. Sci., 11 (2022) 25–30.
  100. Y. Liu, S. Kumar, J. Kwag, J. Kim, J. Kim, C. Ra, Recycle of electrolytically dissolved struvite as an alternative to enhance phosphate and nitrogen recovery from swine wastewater, J. Hazard. Mater., 195 (2011) 175–181.
  101. L. Kékedy-Nagy, A. Teymouri, A.M. Herring, L.F. Greenlee, Electrochemical removal and recovery of phosphorus as struvite in an acidic environment using pure magnesium vs. the AZ31 magnesium alloy as the anode, Chem. Eng. J., 380 (2020) 122480, doi: 10.1016/j.cej.2019.122480.
  102. X. Tan, R. Yu, G. Yang, F. Wei, L. Long, F. Shen, J. Wu, Y. Zhang, Phosphate recovery and simultaneous nitrogen removal from urine by electrochemically induced struvite precipitation, Environ. Sci. Pollut. Res., 28 (2021) 5625–5636.
  103. D.J. Kruk, M. Elektorowicz, J.A. Oleszkiewicz, Struvite precipitation and phosphorus removal using magnesium sacrificial anode, Chemosphere, 101 (2014) 28–33.
  104. A. Hug, K.M. Udert, Struvite precipitation from urine with electrochemical magnesium dosage, Water Res., 47 (2013) 289–299.
  105. P. Cognet, A.M. Wilhelm, H. Delmas, H. Aït Lyazidi, P.L. Fabre, Ultrasound in organic electrosynthesis, Ultrason. Sonochem., 7 (2000) 163–167.
  106. F. Foroughi, L. Kékedy-Nagy, M.H. Islam, J.J. Lamb, L.F. Greenlee, B.G. Pollet, The use of ultrasound for the electrochemical synthesis of magnesium ammonium phosphate hexahydrate (struvite), ECS Trans., 92 (2019) 47–55.
  107. Z. Zhang, L. She, J. Zhang, Z. Wang, P. Xiang, S. Xia, Electrochemical acidolysis of magnesite to induce struvite crystallization for recovering phosphorus from aqueous solution, Chemosphere, 226 (2019) 307–315.
  108. X. Li, X. Zhao, X. Zhou, B. Yang, Phosphate recovery from aqueous solution via struvite crystallization based on electrochemical decomposition of nature magnesite, J. Cleaner Prod., 292 (2021) 126039, doi: 10.1016/j.jclepro.2021.126039.
  109. S. Ren, M. Li, J. Sun, Y. Bian, K. Zuo, X. Zhang, P. Liang, X. Huang, A novel electrochemical reactor for nitrogen and phosphorus recovery from domestic wastewater, Front. Environ. Sci. Eng., 11 (2017) 1–6.
  110. J.H. Kim, B. Min An, D.H. Lim, J.Y. Park, Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation, Water Res., 132 (2018) 200–210.
  111. K. Rajaniemi, T. Hu, E.-T. Nurmesniemi, S. Tuomikoski, U. Lassi, Phosphate and ammonium removal from water through electrochemical and chemical precipitation of struvite, Processes, 9 (2021) 150, doi: 10.3390/pr9010150.
  112. R. Mores, H. Treichel, C. Augusto Zakrzevski, A. Kunz, J. Steffens, R. Marcos Dallago, Remove of phosphorous and turbidity of swine wastewater using electrocoagulation under continuous flow, Sep. Purif. Technol., 171 (2016) 112–117.
  113. I. Kabdaşlı, I. Arslan-Alaton, T. Ölmez-Hancı, O. Tünay, Electrocoagulation applications for industrial wastewaters: a critical review, Environ. Technol. Rev., 1 (2012) 2–45.
  114. J.H. Kim, B. Min An, D.H. Lim, J.Y. Park, Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation, Water Res., 132 (2018) 200–210.
  115. F. Prieto García, J. Callejas, E. Reyes-Cruz, Y. Marmolejo, Recovery and characterization of struvite from sediment and sludge resulting from the process of acid whey electrocoagulation, Asian J. Chem., 25 (2013) 8005–8009.
  116. H. Inan, E. Alaydın, Phosphate and nitrogen removal by iron produced in electrocoagulation reactor, Desal. Water Treat., 52 (2014) 1396–1403.
  117. X. Zheng, H.-N. Kong, D. Wu, C. Wang, Y. Li, H. Ye, Phosphate removal from source separated urine by electrocoagulation using iron plate electrodes, Water Sci. Technol., 60 (2009) 2929–2938.
  118. S. Nazari, A.A. Zinatizadeh, M. Mirghorayshi, M.C.M. van Loosdrecht, Waste or gold? bioelectrochemical resource recovery in source-separated urine, Trends Biotechnol., 38 (2020) 990–1006.
  119. Y.V. Nancharaiah, S. Venkata Mohan, P.N.L. Lens, Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems, Bioresour. Technol., 215 (2016) 173–185.
  120. D.P. Lies, M.E. Hernandez, A. Kappler, R.E. Mielke, J.A. Gralnick, D.K. Newman, Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms, Appl. Environ. Microbiol., 71 (2005) 4414–4426.
  121. J.C. Biffinger, J. Pietron, R. Ray, B. Little, B.R. Ringeisen, A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes, Biosens. Bioelectron., 22 (2007) 1672–1679.
  122. H.J. Kim, S.H. Moon, H.K. Byung, A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotechnol., 9 (1999) 365–367.
  123. D.R. Bond, D.R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69 (2003) 1548–1555.
  124. D.R. Lovley, The microbe electric: conversion of organic matter to electricity, Curr. Opin. Biotechnol., 19 (2008) 564–571.
  125. W.W. Li, H.Q. Yu, Z. He, Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies, Energy Environ. Sci., 7 (2014) 911–924.
  126. Y. Jaffer, T.A. Clark, P. Pearce, S.A. Parsons, Potential phosphorus recovery by struvite formation, Water Res., 36 (2002) 1834–1842.
  127. G.-L. Zang, G.-P. Sheng, W.-W. Li, Z.-H. Tong, R.J. Zeng, C. Shi, H.-Q. Yu, Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique, Phys. Chem. Chem. Phys.,14 (2012) 1978–1984.
  128. Y. Ye, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu, B. jie Ni, X. Zhang, Microbial fuel cell for nutrient recovery and electricity generation from municipal wastewater under different ammonium concentrations, Bioresour. Technol., 292 (2019) 121992, doi: 10.1016/j.biortech.2019.121992.
  129. F. Fischer, C. Bastian, M. Happe, E. Mabillard, N. Schmidt, Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite, Bioresour. Technol., 102 (2011) 5824–5830.
  130. K. Hirooka, O. Ichihashi, Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation, Bioresour. Technol., 137 (2013) 368–375.
  131. O. Ichihashi, K. Hirooka, Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell, Bioresour. Technol., 114 (2012) 303–307.
  132. C. Santoro, I. Ieropoulos, J. Greenman, P. Cristiani, T. Vadas, A. Mackay, B. Li, Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine, Int. J. Hydrogen Energy, 38 (2013) 11543–11551.
  133. Q. Tao, S. Zhou, J. Luo, J. Yuan, Nutrient removal and electricity production from wastewater using microbial fuel cell technique, Desalination, 365 (2015) 92–98.
  134. J. You, J. Greenman, C. Melhuish, I. Ieropoulos, Electricity generation and struvite recovery from human urine using microbial fuel cells, J. Chem. Technol. Biotechnol., 91 (2016) 647–654.
  135. P. Sharma, G.V. Talekar, S. Mutnuri, Demonstration of energy and nutrient recovery from urine by field-scale microbial fuel cell system, Process Biochem., 101 (2021) 89–98.
  136. I. Merino-Jimenez, V. Celorrio, D.J. Fermin, J. Greenman, I. Ieropoulos, Enhanced MFC power production and struvite recovery by the addition of sea salts to urine, Water Res., 109 (2017) 46–53.
  137. Z. Yang, H. Pei, Q. Hou, L. Jiang, L. Zhang, C. Nie, Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: nutrient, organics removal and bioenergy production, Chem. Eng. J., 332 (2018) 277–285.
  138. B. Li, D. Xu, L. Feng, Y. Liu, L. Zhang, Advances and prospects on the aquatic plant coupled with sediment microbial fuel cell system, Environ. Pollut., 297 (2022) 118771, doi: 10.1016/j.envpol.2021.118771.
  139. B.E. Logan, D. Call, S. Cheng, H.V.M. Hamelers, T.H.J.A. Sleutels, A.W. Jeremiasse, R.A. Rozendal, Microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environ. Sci. Technol., 42 (2008) 8630–8640.
  140. R.D. Cusick, B.E. Logan, Phosphate recovery as struvite within a single chamber microbial electrolysis cell, Bioresour. Technol., 107 (2012) 110–115.
  141. R.D. Cusick, M.L. Ullery, B.A. Dempsey, B.E. Logan, Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell, Water Res., 54 (2014) 297–306.
  142. Z. Wang, J. Zhang, X. Guan, L. She, P. Xiang, S. Xia, Z. Zhang, Bioelectrochemical acidolysis of magnesia to induce struvite crystallization for recovering phosphorus from aqueous solution, J. Environ. Sci., 85 (2019) 119–128.
  143. M. Cerrillo, L. Burgos, J. Noguerol, V. Riau, A. Bonmatí, Ammonium and phosphate recovery in a three chambered microbial electrolysis cell: towards obtaining struvite from livestock manure, Processes, 9 (2021) 1916, doi: 10.3390/pr9111916.
  144. A. Almatouq, A.O. Babatunde, Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell, Bioresour. Technol.,237 (2017) 193–203.
  145. M.Z. Khan, A.S. Nizami, M. Rehan, O.K.M. Ouda, S. Sultana, I.M. Ismail, K. Shahzad, Microbial electrolysis cells for hydrogen production and urban wastewater treatment: a case study of Saudi Arabia, Appl. Energy, 185 (2017) 410–420.
  146. Y. Ye, H. Hao Ngo, W. Guo, Y. Liu, S.W. Chang, D. Nguyen, J. Ren, Y. Liu, X. Zhang, Feasibility study on a double chamber microbial fuel cell for nutrient recovery from municipal wastewater, Chem. Eng. J., 358 (2018) 236–242.