References
  -  A.C.S. Batalhão, J.H.P.P. Eustachio, A.C.F. Caldana,
    A.R. Choupina, Chapter 9 – Economic Approaches to
    Sustainable Development: Exploring the Conceptual
    Perspective and the Indicator Initiatives, P. Singh, P. Verma,
    D. Perrotti, K.K. Srivastava, Ed., Environmental Sustainability
  and Economy, Elsevier, Cambridge, MA, 2021, pp. 151–169. 
-  K. Sathiasivan, S. Swaminathan, J. Ramaswamy, M. Rajesh,
    Investigation of hydrodynamics of inverse fluidized bed reactor
	  (IFBR) for struvite (NH4MgPO4·6H2O) recovery from urban
  wastewater, Chem. Pap., 76 (2021) 361–372. 
-  V. Dhawan, Water and Agriculture in India, Background Paper
    for the South Asia Expert Panel During the Global Forum for
    Food and Agriculture (GFFA), Federal Ministry of Food and
    Agriculture, Hamburg, Germany, 2017. 
-  J.S. Guest, S.J. Skerlos, J.L. Barnard, M.B. Beck, G.T. Daigger,
    H. Hilger, S.J. Jackson, K. Karvazy, L. Kelly, L. Macpherson,
    J.R. Mihelcic, A. Pramanik, L. Raskin, M.C.M. Van Loosdrecht,
    D. Yeh, N.G. Love, A new planning and design paradigm
    to achieve sustainable resource recovery from wastewater,
  Environ. Sci. Technol., 43 (2009) 6126–6130. 
-  M. Latifian, J. Liu, B. Mattiassona, Struvite-based fertilizer
    and its physical and chemical properties, Environ. Technol.,
    33 (2012) 2691–2697. 
-  P. Battistoni, P. Pavan, M. Prisciandaro, F. Cecchi, Struvite
    crystallization: a feasible and reliable way to fix phosphorus in
    anaerobic supernatants, Water Res., 34 (2000) 3033–3041. 
-  B. Bergmans, Struvite Recovery from Digested Sludge at
    WWTP West, MS Thesis, Delft University of Technology,
    Netherlands, 2011. 
-  K. Salazar, M.K. McNutt, Mineral Commodity Summaries 2012,
    US Geological Survey, Reston, Virginia, 2012, pp. 58–60. 
-  T. Cai, S.Y. Park, Y. Li, Nutrient recovery from wastewater
    streams by microalgae: status and prospects, Renewable
    Sustainable Energy Rev., 19 (2013) 360–369. 
-  R. Kumar, P. Pal, Assessing the feasibility of N and P recovery
    by struvite precipitation from nutrient-rich wastewater:
    a review, Environ. Sci. Pollut. Res., 22 (2015) 17453–17464. 
-  J.J. Schroder, D. Cordell, A.L. Smit, A. Rosemarin, Sustainable
    Use of Phosphorus: EU Tender ENV, B1/ETU/2009/0025,
    Plant Research International, Wageningen, Netherlands, 2010. 
-  G.K. Morse, S.W. Brett, J.A. Guy, J.N. Lester, Review:
    phosphorus removal and recovery technologies, Sci. Total
    Environ., 212 (1998) 69–81. 
-  L. Shu, P. Schneider, V. Jegatheesan, J. Johnson, An economic
    evaluation of phosphorus recovery as struvite from digester
    supernatant, Bioresour. Technol., 97 (2006) 2211–2216. 
-  G. Crini, E. Lichtfouse, Advantages and disadvantages of
    techniques used for wastewater treatment, Environ. Chem.
    Lett., 17 (2019) 145–155. 
-  Y. Yang, X. Shi, W. Ballent, B.K. Mayer, Biological phosphorus
    recovery: review of current progress and future needs,
    Water Environ. Res., 89 (2017) 2122–2135. 
-  S.Y. Gebremariam, M.W. Beutel, D. Christian, T.F. Hess,
    Research advances and challenges in the microbiology of
    enhanced biological phosphorus removal—a critical review,
    Water Environ. Res., 83 (2011) 195–219. 
-  Z. Yuan, S. Pratt, D.J. Batstone, Phosphorus recovery from
    wastewater through microbial processes, Curr. Opin.
    Biotechnol., 23 (2012) 878–883. 
-  A. Bateman, D. Van Der Horst, D. Boardman, A. Kansal,
    C. Carliell-Marquet, Closing the phosphorus loop in England:
    the spatio-temporal balance of phosphorus capture from
    manure versus crop demand for fertiliser, Resour. Conserv.
    Recycl., 55 (2011) 1146–1153. 
-  M. Zaman, M. Kim, G. Nakhla, A. Singh, F. Yang, Enhanced
    biological phosphorus removal using thermal alkaline
    hydrolyzed municipal wastewater biosolids, J. Environ. Sci.,
    86 (2019) 164–174. 
-  L. Spinosa, From sludge to resources through biosolids,
    Water Sci. Technol., 50 (2004) 1–9. 
-  M.K. Winkler, L. Straka, New directions in biological
    nitrogen removal and recovery from wastewater, Curr. Opin.
    Biotechnol., 57 (2019) 50–55. 
-  C. Wan, S. Ding, C. Zhang, X. Tan, W. Zou, X. Liu, X. Yang,
    Simultaneous recovery of nitrogen and phosphorus from
    sludge fermentation liquid by zeolite adsorption: mechanism
    and application, Sep. Purif. Technol., 180 (2017) 1–12. 
-  G. Provolo, F. Perazzolo, G. Mattachini, A. Finzi, E. Naldi,
    E. Riva, Nitrogen removal from digested slurries using a
    simplified ammonia stripping technique, Waste Manage.,
    69 (2017) 154–161. 
-  K. Yetilmezsoy, Z. Sapci-Zengin, Recovery of ammonium
    nitrogen from the effluent of UASB treating poultry manure
    wastewater by MAP precipitation as a slow release fertilizer,
    J. Hazard. Mater., 166 (2009) 260–269. 
-  M.I.H. Bhuiyan, D.S. Mavinic, R.D. Beckie, A solubility and
    thermodynamic study of struvite, Environ. Technol., 28 (2007)
    1015–1026. 
-  R. Cabeza, B. Steingrobe, W. Römer, N. Claassen, Effectiveness
    of recycled P products as P fertilizers, as evaluated in pot
    experiments, Nutr. Cycling Agroecosyst., 91 (2011) 173–184. 
-  P.J. Talboys, J. Heppell, T. Roose, J.R. Healey, D.L. Jones, P.J.
    Withers, Struvite: a slow-release fertiliser for sustainable
    phosphorus management?, Plant Soil, 401 (2016) 109–123. 
-  L. Shu, P. Schneider, V. Jegatheesan, J. Johnson, An economic
    evaluation of phosphorus recovery as struvite from digester
    supernatant, Bioresour. Technol., 97 (2006) 2211–2216. 
-  J.D. Doyle, K. Oldring, J. Churchley, C. Price, S.A. Parsons,
    Chemical control of struvite precipitation, J. Environ. Eng.,
    129 (2003) 419–426. 
-  Y. Ueno, M. Fujii, Three years experience of operating and
    selling recovered struvite from full-scale plant, Environ.
    Technol., 22 (2010) 1373–1381. 
-  M.M. Rahman, M.A.M. Salleh, U. Rashid, A. Ahsan,
    M.M. Hossain, C.S. Ra, Production of slow release crystal
    fertilizer from wastewaters through struvite crystallization – a
    review, Arabian J. Chem., 7 (2014) 139–155. 
-  J.D. Doyle, S.A. Parsons, Struvite formation, control and
    recovery, Water Res., 36 (2002) 3925–3940. 
-  N.C. Bouropoulos, P.G. Koutsoukos, Spontaneous precipitation
    of struvite from aqueous solutions, J. Cryst. Growth, 213 (2000)
    381–388. 
-  J.D. Doyle, S.A. Parsons, Struvite formation, control and
    recovery, Water Res., 36 (2002) 3925–3940. 
-  R. Sharp, E. Vadiveloo, R. Fergen, M. Moncholi, P. Pitt, D. Wankmuller,
    R. Latimer, A theoretical and practical evaluation of
    struvite control and recovery, Water Environ. Res., 85 (2013)
    675–686. 
-  D. Crutchik, J.M. Garrido, Struvite crystallization versus
    amorphous magnesium and calcium phosphate precipitation
    during the treatment of a saline industrial wastewater,
    Water Sci. Technol., 64 (2011) 2460–2467. 
-  I. Kabdaşli, S.A. Parsons, O. Tünay, Effect of major ions on
    induction time of struvite precipitation, Croat. Chem. Acta,
    79 (2006) 243–251. 
-  J.W. Mullin, Crystallization, Elsevier, Oxford, 2001. 
-  S. Regy, D. Mangin, J.P. Klein, J. Lieto, Phosphate Recovery by
    Struvite Precipitation in a Stirred Reactor, Phosphate Recovery
    in Wastewater by Crystallization, LAGEP: Internal Report,
    CEEP, Lyon, 2002, pp. 54–58. 
-  H. Saidou, A. Korchef, S. Ben Moussa, M. Ben Amor, Struvite precipitation
	  by the dissolved CO2 degasification technique: impact
  of the airflow rate and pH, Chemosphere, 74 (2009) 338–343. 
-  M.M. Rahman, M.A.M. Salleh, U. Rashid, A. Ahsan,
    M.M. Hossain, C.S. Ra, Production of slow release crystal
    fertilizer from wastewaters through struvite crystallization – a
    review, Arabian J. Chem., 7 (2014) 139–155. 
-  N. Krishnamoorthy, B. Dey, Y. Unpaprom, R. Ramaraj, G.P. Maniam,
    N. Govindan, S. Jayaraman, T. Arunachalam, B. Paramasivan,
    Engineering principles and process designs for phosphorus
    recovery as struvite: a comprehensive review, J. Environ. Chem.
  Eng., 9 (2021) 105579, doi: 10.1016/j.jece.2021.105579. 
-  X.D. Hao, C.C. Wang, L. Lan, M.C.M. Van Loosdrecht, Struvite
	  formation, analytical methods and effects of pH and Ca2+,
  Water Sci. Technol., 58 (2008) 1687–1692. 
-  A. Andrade, R.D. Schuiling, The chemistry of struvite
    crystallization, Min. J., 23 (2001) 37–46. 
-  K.N. Ohlinger, P.E., T.M. Young, E.D. Schroeder, Kinetics effects
    on preferential struvite accumulation in wastewater, J. Environ.
    Eng., 125 (1999) 730–737. 
-  I. Çelen, M. Türker, Recovery of ammonia as struvite from
    anaerobic digester effluents, Environ. Technol. (United
    Kingdom)., 22 (2001) 1263–1272. 
-  I. Stratful, M.D. Scrimshaw, J.N. Lester, Conditions influencing
    the precipitation of magnesium ammonium phosphate,
    Water Res., 35 (2001) 4191–4199. 
-  P. Battistoni, A. De Angelis, P. Pavan, M. Prisciandaro, F. Cecchi,
    Phosphorus removal from a real anaerobic supernatant by
    struvite crystallization, Water Res., 35 (2001) 2167–2178. 
-  Z. Ye, Y. Shen, X. Ye, Z. Zhang, S. Chen, J. Shi, Phosphorus
    recovery from wastewater by struvite crystallization: property
    of aggregates, J. Environ. Sci., 26 (2014) 991–1000. 
-  A. Matynia, B. Wierzbowska, N. Hutnik, A. Mazienczuk,
    A. Kozik, K. Piotrowski, Separation of struvite from mineral
    fertilizer industry wastewater, Procedia Environ. Sci., 18 (2013)
    766–775. 
-  K. Yetilmezsoy, Z. Sapci-Zengin, Recovery of ammonium
    nitrogen from the effluent of UASB treating poultry manure
    wastewater by MAP precipitation as a slow release fertilizer,
    J. Hazard. Mater., 166 (2009) 260–269. 
-  K. Yetilmezsoy, F. Ilhan, Z. Sapci-Zengin, S. Sakar, M.T. Gonullu,
    Decolorization and COD reduction of UASB pretreated poultry
    manure wastewater by electrocoagulation process: a posttreatment
    study, J. Hazard. Mater., 162 (2009) 120–132. 
-  A. Kozik, N. Hutnik, A. Matynia, J. Gluzinska, K. Piotrowski,
    Recovery of phosphate (V) ions from liquid waste solutions
    containing organic impurities, Chemik, 65 (2011) 675–686. 
-  J. Koralewska, K. Piotrowski, B. Wierzbowska, A. Matynia,
    Kinetics of reaction-crystallization of struvite in the continuous
    draft tube magma type crystallizers-influence of different
    internal hydrodynamics, Chin. J. Chem. Eng., 17 (2009) 330–339. 
-  A. Matynia, B. Wierzbowska, N. Hutnik, A. Mazienczuk,
    A. Kozik, K. Piotrowski, Separation of struvite from mineral
    fertilizer industry wastewater, Procedia Environ. Sci., 18 (2013)
    766–775. 
-  T. Zhang, L. Ding, H. Ren, Pretreatment of ammonium removal
    from landfill leachate by chemical precipitation, J. Hazard.
    Mater., 166 (2009) 911–915. 
-  R. Kumar, P. Pal, Turning hazardous waste into value-added
    products: production and characterization of struvite from
    ammoniacal waste with new approaches, J. Cleaner Prod.,
    43 (2013) 59–70. 
-  B. Liu, A. Giannis, J. Zhang, V.W.C. Chang, J.Y. Wang,
    Characterization of induced struvite formation from sourceseparated
    urine using seawater and brine as magnesium
    sources, Chemosphere, 93 (2013) 2738–2747. 
-  D. Kim, J. Kim, H.D. Ryu, S.I. Lee, Effect of mixing on
    spontaneous struvite precipitation from semiconductor
    wastewater, Bioresour. Technol., 100 (2009) 74–78. 
-  K. Sathiasivan, J. Ramaswamy, M. Rajesh, Optimization studies
    on the production of struvite from human urine – waste into
    value, Desal. Water Treat., 155 (2019) 134–144. 
-  D.M. Rodrigues, R. do Amaral Fragoso, A.P. Carvalho, T. Hein,
    A.G. de Brito, Recovery of phosphates as struvite from urinediverting
	  toilets: optimization of pH, Mg:PO4 ratio and contact
    time to improve precipitation yield and crystal morphology,
  Water Sci. Technol., 80 (2019) 1276–1286. 
-  Z. Li, X. Ren, J. Zuo, Y. Liu, E. Duan, J. Yang, P. Chen, Y. Wang,
    Struvite precipitation for ammonia nitrogen removal in
    7-aminocephalosporanic acid wastewater, Molecules, 17 (2012)
    2126–2139. 
-  J. Koralewska, K. Piotrowski, B. Wierzbowska, A. Matynia,
    Kinetics of reaction-crystallization of struvite in the continuous
    draft tube magma type crystallizers—influence of different
    internal hydrodynamics, Chin. J. Chem. Eng., 17 (2009) 330–339. 
-  AE. Durrant, M.D. Scrimshaw, I. Stratful, J.N. Lester, Review
    of the feasibility of recovering phosphate from wastewater
    for use as a raw material by the phosphate industry, Environ.
    Technol., 20 (1999) 749–58. 
-  H.K. Aage, B.L. Andersen, A. Blom, I. Jensen, The solubility of
    struvite, J. Radioanal. Nucl. Chem., 223 (1997) 213–215. 
-  M. Hanhoun, L. Montastruc, C. Azzaro-Pantel, B. Biscans,
    M. Frèche, L. Pibouleau, Temperature impact assessment
    on struvite solubility product: a thermodynamic modeling
    approach, Chem. Eng. J., 167 (2011) 50–58. 
-  Y.H. Liu, J.H. Kwag, J.H. Kim, C.S. Ra, Recovery of nitrogen
    and phosphorus by struvite crystallization from swine
    wastewater, Desalination, 277 (2011) 364–369. 
-  M.I.H. Bhuiyan, D.S. Mavinic, F.A. Koch, Thermal decomposition
    of struvite and its phase transition, Chemosphere, 70 (2008)
    1347–1356. 
-  B. Li, I. Boiarkina, W. Yu, H.M. Huang, T. Munir,
    G.Q. Wang, B.R. Young, Phosphorous recovery through
    struvite crystallization: challenges for future design, Sci. Total
    Environ., 648 (2019) 1244–1256. 
-  R. Kumar, P. Pal, Turning hazardous waste into value-added
    products: production and characterization of struvite from
    ammoniacal waste with new approaches, J. Cleaner Prod.,
    43 (2013) 59–70. 
-  S. Uludag-Demirer, A study on nutrient removal from municipal
    wastewater by struvite formation using Taguchi’s design of
    experiments, Environ. Eng. Sci., 25 (2008) 1–10. 
-  A. Uysal, S. Demir, E. Sayilgan, F. Eraslan, Z. Kucukyumuk,
    Optimization of struvite fertilizer formation from baker’s yeast
    wastewater: growth and nutrition of maize and tomato plants,
    Environ. Sci. Pollut. Res., 21 (2014) 3264–3274. 
-  B. Li, H.M. Huang, I. Boiarkina, W. Yu, Y.F. Huang,
    G.Q. Wang, B.R. Young, Phosphorus recovery through struvite
    crystallisation: recent developments in the understanding of
    operational factors, J. Environ. Manage., 248 (2019) 109254,
    doi: 10.1016/j.jenvman.2019.07.025. 
-  K.M. Hillman, R.C. Sims, Struvite formation associated with
    the microalgae biofilm matrix of a rotating algal biofilm reactor
    (RABR) during nutrient removal from municipal wastewater,
    Water Sci. Technol., 81 (2020) 644–655. 
-  L. Edahwati, R. Rendri Anggriawan, Recovery of phosphate and
    ammonium from dairy cow urine by struvite crystallization with
    vertical reactor, Int. J. Eco-Innovation Sci. Eng., 1 (2020) 30–35. 
-  S. Shim, S. Won, A. Reza, S. Kim, N. Ahmed, C. Ra, Design and
    optimization of fluidized bed reactor operating conditions for
    struvite recovery process from swine wastewater, Processes,
  8 (2020) 422, doi: 10.3390/pr8040422. 
-  W. Gong, Y. Li, L. Luo, X. Luo, X. Cheng, H. Liang, Application of
    struvite-MAP crystallization reactor for treating cattle manure
    anaerobic digested slurry: nitrogen and phosphorus recovery
    and crystal fertilizer efficiency in plant trials, Int. J. Environ.
    Res. Public Health, 15 (2018) 1397, doi: 10.3390/ijerph15071397. 
-  P. Zamora, T. Georgieva, I. Salcedo, N. Elzinga, P. Kuntke,
    C.J.N. Buisman, Long-term operation of a pilot-scale reactor for
    phosphorus recovery as struvite from source-separated urine,
    J. Chem. Technol. Biotechnol., 92 (2017) 1035–1045. 
-  N. Hutnik, B. Wierzbowska, K. Piotrowski, A. Matynia, Effect
    of continuous crystallizer performance on struvite crystals
    produced in reaction crystallization from solutions containing
    phosphate (V) and zinc (II) ions, Braz. J. Chem. Eng., 33 (2016)
    307–317. 
-  M. Cerrillo, J. Palatsi, J. Comas, J. Vicens, A. Bonmatí, Struvite
    precipitation as a technology to be integrated in a manure
    anaerobic digestion treatment plant – removal efficiency, crystal
    characterization and agricultural assessment, J. Chem. Technol.
    Biotechnol., 90 (2015) 1135–1143. 
-  S. Rhoton, M. Grau, C.J. Brouckaert, G. Gounden, C.A. Buckley,
    Field Operation of a Simple Struvite Reactor to Produce
    Phosphorus Fertiliser From Source-Separated Urine in
    eThekwini, WISA Biennal Conference 2014, 25–28 May,
    Mbombela, Mpumalanga, South Africa, 2014, pp. 1–5. 
-  M.P. Huchzermeier, W. Tao, Overcoming challenges to struvite
    recovery from anaerobically digested dairy manure, Water
    Environ. Res., 84 (2012) 34–41. 
-  Y.H. Song, G.L. Qiu, P. Yuan, X.Y. Cui, J.F. Peng, P. Zeng,
    L. Duan, L.C. Xiang, F. Qian, Nutrients removal and recovery
    from anaerobically digested swine wastewater by struvite
    crystallization without chemical additions, J. Hazard. Mater.,
    190 (2011) 140–149. 
-  M.M. Rahman, Y.H. Liu, J.H. Kwag, C.S. Ra, Recovery of
    struvite from animal wastewater and its nutrient leaching loss
    in soil, J. Hazard. Mater., 186 (2011) 2026–2030. 
-  K.S. Le Corre, E. Valsami-Jones, P. Hobbs, B. Jefferson, S.A. Parsons,
    Struvite crystallisation and recovery using a stainless steel
    structure as a seed material, Water Res., 41 (2007) 2449–2456. 
-  M. Ronteltap, M. Maurer, R. Hausherr, W. Gujer, Struvite
    precipitation from urine – influencing factors on particle size,
    Water Res., 44 (2010) 2038–2046. 
-  S. Shim, S. Won, A. Reza, S. Kim, N. Ahmed, C. Ra,
    Simultaneous removal of pollutants and recovery of nutrients
    from high-strength swine wastewater using a novel integrated
  treatment process, Animals,10 (2020) 835, doi: 10.3390/ani10050835. 
-  B. Kim, N. Jang, M. Lee, J.K. Jang, I.S. Chang, Microbial fuel cell
    driven mineral rich wastewater treatment process for circular
    economy by creating virtuous cycles, Bioresour. Technol.,
  320 (2021) 124254, doi: 10.1016/j.biortech.2020.124254. 
-  C.C. Wang, X.D. Hao, G.S. Guo, M.C.M. van Loosdrecht,
    Formation of pure struvite at neutral pH by electrochemical
    deposition, Chem. Eng. J., 159 (2010) 280–283. 
-  S. Ben Moussa, G. Maurin, C. Gabrielli, M. Ben Amor,
    Electrochemical precipitation of struvite, Electrochem. Solid-State Lett., 9 (2006) C97, doi: 10.1149/1.2189222. 
-  L. Pastor, D. Mangin, R. Barat, A. Seco, A pilot-scale study
    of struvite precipitation in a stirred tank reactor: conditions
    influencing the process, Bioresour. Technol., 99 (2008)
    6285–6291. 
-  L. Kékedy-Nagy, M. Abolhassani, S.I.P. Bakovic, Z. Anari,
    J.P. Moore II, B.G. Pollet, L.F. Greenlee, Electroless production
    of fertilizer (struvite) and hydrogen from synthetic
    agricultural wastewaters, J. Am. Chem. Soc., 142 (2020)
    18844–18858. 
-  X. Zhou, Y. Chen, An integrated process for struvite
    electrochemical precipitation and ammonia oxidation of
    sludge alkaline hydrolysis supernatant, Environ. Sci. Pollut.
    Res., 26 (2019) 2435–2444. 
-  X.Z. Li, Q.L. Zhao, X.D. Hao, Ammonium removal from
    landfill leachate by chemical precipitation, Waste Manage.,
    19 (1999) 409–415. 
-  I. Çelen, J.R. Buchanan, R.T. Burns, R. Bruce Robinson,
    D. Raj Raman, Using a chemical equilibrium model to predict
    amendments required to precipitate phosphorus as struvite
    in liquid swine manure, Water Res., 41 (2007) 1689–1696. 
-  C. Di Iaconi, M. Pagano, R. Ramadori, A. Lopez, Nitrogen
    recovery from a stabilized municipal landfill leachate,
    Bioresour. Technol., 101 (2010) 1732–1736. 
-  Y.J. Shih, R.R.M. Abarca, M.D.G. de Luna, Y.H. Huang,
    M.C. Lu, Recovery of phosphorus from synthetic wastewaters
    by struvite crystallization in a fluidized-bed reactor: effects
    of pH, phosphate concentration and coexisting ions,
    Chemosphere, 173 (2017) 466–473. 
-  H. Huang, P. Zhang, Z. Zhang, J. Liu, J. Xiao, F. Gao,
    Simultaneous removal of ammonia nitrogen and
    recovery of phosphate from swine wastewater by struvite
    electrochemical precipitation and recycling technology,
    J. Cleaner Prod., 127 (2016) 302–310. 
-  Ş. İrdemez, Z. Bingül, S. Kul, F.E. Torun, N. Demircioğlu, The
    effect of supporting electrolyte type and concentration on the
    phosphate removal from water by electrocoagulation method
    using iron electrodes, NOHU J. Eng. Sci., 11 (2022) 25–30. 
-  Y. Liu, S. Kumar, J. Kwag, J. Kim, J. Kim, C. Ra, Recycle of
    electrolytically dissolved struvite as an alternative to enhance
    phosphate and nitrogen recovery from swine wastewater,
    J. Hazard. Mater., 195 (2011) 175–181. 
-  L. Kékedy-Nagy, A. Teymouri, A.M. Herring, L.F. Greenlee,
    Electrochemical removal and recovery of phosphorus as
    struvite in an acidic environment using pure magnesium
    vs. the AZ31 magnesium alloy as the anode, Chem. Eng. J.,
    380 (2020) 122480, doi: 10.1016/j.cej.2019.122480. 
-  X. Tan, R. Yu, G. Yang, F. Wei, L. Long, F. Shen, J. Wu, Y. Zhang,
    Phosphate recovery and simultaneous nitrogen removal from
    urine by electrochemically induced struvite precipitation,
    Environ. Sci. Pollut. Res., 28 (2021) 5625–5636. 
-  D.J. Kruk, M. Elektorowicz, J.A. Oleszkiewicz, Struvite
    precipitation and phosphorus removal using magnesium
    sacrificial anode, Chemosphere, 101 (2014) 28–33. 
-  A. Hug, K.M. Udert, Struvite precipitation from urine with
    electrochemical magnesium dosage, Water Res., 47 (2013)
    289–299. 
-  P. Cognet, A.M. Wilhelm, H. Delmas, H. Aït Lyazidi, P.L. Fabre,
    Ultrasound in organic electrosynthesis, Ultrason. Sonochem.,
    7 (2000) 163–167. 
-  F. Foroughi, L. Kékedy-Nagy, M.H. Islam, J.J. Lamb,
    L.F. Greenlee, B.G. Pollet, The use of ultrasound for the
    electrochemical synthesis of magnesium ammonium
    phosphate hexahydrate (struvite), ECS Trans., 92 (2019) 47–55. 
-  Z. Zhang, L. She, J. Zhang, Z. Wang, P. Xiang, S. Xia,
    Electrochemical acidolysis of magnesite to induce struvite
    crystallization for recovering phosphorus from aqueous
    solution, Chemosphere, 226 (2019) 307–315. 
-  X. Li, X. Zhao, X. Zhou, B. Yang, Phosphate recovery from
    aqueous solution via struvite crystallization based on electrochemical decomposition of nature magnesite, J. Cleaner
  Prod., 292 (2021) 126039, doi: 10.1016/j.jclepro.2021.126039. 
-  S. Ren, M. Li, J. Sun, Y. Bian, K. Zuo, X. Zhang, P. Liang,
    X. Huang, A novel electrochemical reactor for nitrogen and
    phosphorus recovery from domestic wastewater, Front.
    Environ. Sci. Eng., 11 (2017) 1–6. 
-  J.H. Kim, B. Min An, D.H. Lim, J.Y. Park, Electricity production
    and phosphorous recovery as struvite from synthetic
    wastewater using magnesium-air fuel cell electrocoagulation,
    Water Res., 132 (2018) 200–210. 
-  K. Rajaniemi, T. Hu, E.-T. Nurmesniemi, S. Tuomikoski,
    U. Lassi, Phosphate and ammonium removal from water
    through electrochemical and chemical precipitation of
  struvite, Processes, 9 (2021) 150, doi: 10.3390/pr9010150. 
-  R. Mores, H. Treichel, C. Augusto Zakrzevski, A. Kunz,
    J. Steffens, R. Marcos Dallago, Remove of phosphorous
    and turbidity of swine wastewater using electrocoagulation
    under continuous flow, Sep. Purif. Technol., 171 (2016)
    112–117. 
-  I. Kabdaşlı, I. Arslan-Alaton, T. Ölmez-Hancı, O. Tünay,
    Electrocoagulation applications for industrial wastewaters:
    a critical review, Environ. Technol. Rev., 1 (2012) 2–45. 
-  J.H. Kim, B. Min An, D.H. Lim, J.Y. Park, Electricity production
    and phosphorous recovery as struvite from synthetic
    wastewater using magnesium-air fuel cell electrocoagulation,
    Water Res., 132 (2018) 200–210. 
-  F. Prieto García, J. Callejas, E. Reyes-Cruz, Y. Marmolejo,
    Recovery and characterization of struvite from sediment
    and sludge resulting from the process of acid whey
    electrocoagulation, Asian J. Chem., 25 (2013) 8005–8009. 
-  H. Inan, E. Alaydın, Phosphate and nitrogen removal by iron
    produced in electrocoagulation reactor, Desal. Water Treat.,
    52 (2014) 1396–1403. 
-  X. Zheng, H.-N. Kong, D. Wu, C. Wang, Y. Li, H. Ye, Phosphate
    removal from source separated urine by electrocoagulation
    using iron plate electrodes, Water Sci. Technol., 60 (2009)
    2929–2938. 
-  S. Nazari, A.A. Zinatizadeh, M. Mirghorayshi, M.C.M. van
    Loosdrecht, Waste or gold? bioelectrochemical resource
    recovery in source-separated urine, Trends Biotechnol.,
    38 (2020) 990–1006. 
-  Y.V. Nancharaiah, S. Venkata Mohan, P.N.L. Lens, Recent
    advances in nutrient removal and recovery in biological and
    bioelectrochemical systems, Bioresour. Technol., 215 (2016)
    173–185. 
-  D.P. Lies, M.E. Hernandez, A. Kappler, R.E. Mielke,
    J.A. Gralnick, D.K. Newman, Shewanella oneidensis MR-1
    uses overlapping pathways for iron reduction at a distance
    and by direct contact under conditions relevant for biofilms,
    Appl. Environ. Microbiol., 71 (2005) 4414–4426. 
-  J.C. Biffinger, J. Pietron, R. Ray, B. Little, B.R. Ringeisen,
    A biofilm enhanced miniature microbial fuel cell using
    Shewanella oneidensis DSP10 and oxygen reduction cathodes,
    Biosens. Bioelectron., 22 (2007) 1672–1679. 
-  H.J. Kim, S.H. Moon, H.K. Byung, A microbial fuel cell
    type lactate biosensor using a metal-reducing bacterium,
    Shewanella putrefaciens, J. Microbiol. Biotechnol., 9 (1999)
    365–367. 
-  D.R. Bond, D.R. Lovley, Electricity production by Geobacter
    sulfurreducens attached to electrodes, Appl. Environ.
    Microbiol., 69 (2003) 1548–1555. 
-  D.R. Lovley, The microbe electric: conversion of organic matter
    to electricity, Curr. Opin. Biotechnol., 19 (2008) 564–571. 
-  W.W. Li, H.Q. Yu, Z. He, Towards sustainable wastewater
    treatment by using microbial fuel cells-centered technologies,
    Energy Environ. Sci., 7 (2014) 911–924. 
-  Y. Jaffer, T.A. Clark, P. Pearce, S.A. Parsons, Potential
    phosphorus recovery by struvite formation, Water Res.,
    36 (2002) 1834–1842. 
-  G.-L. Zang, G.-P. Sheng, W.-W. Li, Z.-H. Tong, R.J. Zeng, C. Shi,
    H.-Q. Yu, Nutrient removal and energy production in a urine
    treatment process using magnesium ammonium phosphate
    precipitation and a microbial fuel cell technique, Phys. Chem.
    Chem. Phys.,14 (2012) 1978–1984. 
-  Y. Ye, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu,
    B. jie Ni, X. Zhang, Microbial fuel cell for nutrient recovery
    and electricity generation from municipal wastewater under
    different ammonium concentrations, Bioresour. Technol.,
    292 (2019) 121992, doi: 10.1016/j.biortech.2019.121992. 
-  F. Fischer, C. Bastian, M. Happe, E. Mabillard, N. Schmidt,
    Microbial fuel cell enables phosphate recovery from digested
    sewage sludge as struvite, Bioresour. Technol., 102 (2011)
    5824–5830. 
-  K. Hirooka, O. Ichihashi, Phosphorus recovery from artificial
    wastewater by microbial fuel cell and its effect on power
    generation, Bioresour. Technol., 137 (2013) 368–375. 
-  O. Ichihashi, K. Hirooka, Removal and recovery of phosphorus
    as struvite from swine wastewater using microbial fuel
    cell, Bioresour. Technol., 114 (2012) 303–307. 
-  C. Santoro, I. Ieropoulos, J. Greenman, P. Cristiani, T. Vadas,
    A. Mackay, B. Li, Power generation and contaminant removal
    in single chamber microbial fuel cells (SCMFCs) treating
    human urine, Int. J. Hydrogen Energy, 38 (2013) 11543–11551. 
-  Q. Tao, S. Zhou, J. Luo, J. Yuan, Nutrient removal and
    electricity production from wastewater using microbial fuel
    cell technique, Desalination, 365 (2015) 92–98. 
-  J. You, J. Greenman, C. Melhuish, I. Ieropoulos, Electricity
    generation and struvite recovery from human urine using
    microbial fuel cells, J. Chem. Technol. Biotechnol., 91 (2016)
    647–654. 
-  P. Sharma, G.V. Talekar, S. Mutnuri, Demonstration of energy
    and nutrient recovery from urine by field-scale microbial fuel
    cell system, Process Biochem., 101 (2021) 89–98. 
-  I. Merino-Jimenez, V. Celorrio, D.J. Fermin, J. Greenman,
    I. Ieropoulos, Enhanced MFC power production and struvite
    recovery by the addition of sea salts to urine, Water Res.,
    109 (2017) 46–53. 
-  Z. Yang, H. Pei, Q. Hou, L. Jiang, L. Zhang, C. Nie, Algal
    biofilm-assisted microbial fuel cell to enhance domestic
    wastewater treatment: nutrient, organics removal and
    bioenergy production, Chem. Eng. J., 332 (2018) 277–285. 
-  B. Li, D. Xu, L. Feng, Y. Liu, L. Zhang, Advances and prospects
    on the aquatic plant coupled with sediment microbial fuel cell
    system, Environ. Pollut., 297 (2022) 118771, doi: 10.1016/j.envpol.2021.118771. 
-  B.E. Logan, D. Call, S. Cheng, H.V.M. Hamelers,
    T.H.J.A. Sleutels, A.W. Jeremiasse, R.A. Rozendal, Microbial
    electrolysis cells for high yield hydrogen gas production from
    organic matter, Environ. Sci. Technol., 42 (2008) 8630–8640. 
-  R.D. Cusick, B.E. Logan, Phosphate recovery as struvite
    within a single chamber microbial electrolysis cell, Bioresour.
    Technol., 107 (2012) 110–115. 
-  R.D. Cusick, M.L. Ullery, B.A. Dempsey, B.E. Logan,
    Electrochemical struvite precipitation from digestate with a
    fluidized bed cathode microbial electrolysis cell, Water Res.,
    54 (2014) 297–306. 
-  Z. Wang, J. Zhang, X. Guan, L. She, P. Xiang, S. Xia, Z. Zhang,
    Bioelectrochemical acidolysis of magnesia to induce struvite
    crystallization for recovering phosphorus from aqueous
    solution, J. Environ. Sci., 85 (2019) 119–128. 
-  M. Cerrillo, L. Burgos, J. Noguerol, V. Riau, A. Bonmatí,
    Ammonium and phosphate recovery in a three chambered
    microbial electrolysis cell: towards obtaining struvite from
    livestock manure, Processes, 9 (2021) 1916, doi: 10.3390/pr9111916. 
-  A. Almatouq, A.O. Babatunde, Concurrent hydrogen
    production and phosphorus recovery in dual chamber
    microbial electrolysis cell, Bioresour. Technol.,237 (2017)
    193–203. 
-  M.Z. Khan, A.S. Nizami, M. Rehan, O.K.M. Ouda, S. Sultana,
    I.M. Ismail, K. Shahzad, Microbial electrolysis cells for
    hydrogen production and urban wastewater treatment: a case
    study of Saudi Arabia, Appl. Energy, 185 (2017) 410–420. 
-  Y. Ye, H. Hao Ngo, W. Guo, Y. Liu, S.W. Chang, D. Nguyen,
    J. Ren, Y. Liu, X. Zhang, Feasibility study on a double chamber
    microbial fuel cell for nutrient recovery from municipal
    wastewater, Chem. Eng. J., 358 (2018) 236–242.