References
- A.C.S. Batalhão, J.H.P.P. Eustachio, A.C.F. Caldana,
A.R. Choupina, Chapter 9 – Economic Approaches to
Sustainable Development: Exploring the Conceptual
Perspective and the Indicator Initiatives, P. Singh, P. Verma,
D. Perrotti, K.K. Srivastava, Ed., Environmental Sustainability
and Economy, Elsevier, Cambridge, MA, 2021, pp. 151–169.
- K. Sathiasivan, S. Swaminathan, J. Ramaswamy, M. Rajesh,
Investigation of hydrodynamics of inverse fluidized bed reactor
(IFBR) for struvite (NH4MgPO4·6H2O) recovery from urban
wastewater, Chem. Pap., 76 (2021) 361–372.
- V. Dhawan, Water and Agriculture in India, Background Paper
for the South Asia Expert Panel During the Global Forum for
Food and Agriculture (GFFA), Federal Ministry of Food and
Agriculture, Hamburg, Germany, 2017.
- J.S. Guest, S.J. Skerlos, J.L. Barnard, M.B. Beck, G.T. Daigger,
H. Hilger, S.J. Jackson, K. Karvazy, L. Kelly, L. Macpherson,
J.R. Mihelcic, A. Pramanik, L. Raskin, M.C.M. Van Loosdrecht,
D. Yeh, N.G. Love, A new planning and design paradigm
to achieve sustainable resource recovery from wastewater,
Environ. Sci. Technol., 43 (2009) 6126–6130.
- M. Latifian, J. Liu, B. Mattiassona, Struvite-based fertilizer
and its physical and chemical properties, Environ. Technol.,
33 (2012) 2691–2697.
- P. Battistoni, P. Pavan, M. Prisciandaro, F. Cecchi, Struvite
crystallization: a feasible and reliable way to fix phosphorus in
anaerobic supernatants, Water Res., 34 (2000) 3033–3041.
- B. Bergmans, Struvite Recovery from Digested Sludge at
WWTP West, MS Thesis, Delft University of Technology,
Netherlands, 2011.
- K. Salazar, M.K. McNutt, Mineral Commodity Summaries 2012,
US Geological Survey, Reston, Virginia, 2012, pp. 58–60.
- T. Cai, S.Y. Park, Y. Li, Nutrient recovery from wastewater
streams by microalgae: status and prospects, Renewable
Sustainable Energy Rev., 19 (2013) 360–369.
- R. Kumar, P. Pal, Assessing the feasibility of N and P recovery
by struvite precipitation from nutrient-rich wastewater:
a review, Environ. Sci. Pollut. Res., 22 (2015) 17453–17464.
- J.J. Schroder, D. Cordell, A.L. Smit, A. Rosemarin, Sustainable
Use of Phosphorus: EU Tender ENV, B1/ETU/2009/0025,
Plant Research International, Wageningen, Netherlands, 2010.
- G.K. Morse, S.W. Brett, J.A. Guy, J.N. Lester, Review:
phosphorus removal and recovery technologies, Sci. Total
Environ., 212 (1998) 69–81.
- L. Shu, P. Schneider, V. Jegatheesan, J. Johnson, An economic
evaluation of phosphorus recovery as struvite from digester
supernatant, Bioresour. Technol., 97 (2006) 2211–2216.
- G. Crini, E. Lichtfouse, Advantages and disadvantages of
techniques used for wastewater treatment, Environ. Chem.
Lett., 17 (2019) 145–155.
- Y. Yang, X. Shi, W. Ballent, B.K. Mayer, Biological phosphorus
recovery: review of current progress and future needs,
Water Environ. Res., 89 (2017) 2122–2135.
- S.Y. Gebremariam, M.W. Beutel, D. Christian, T.F. Hess,
Research advances and challenges in the microbiology of
enhanced biological phosphorus removal—a critical review,
Water Environ. Res., 83 (2011) 195–219.
- Z. Yuan, S. Pratt, D.J. Batstone, Phosphorus recovery from
wastewater through microbial processes, Curr. Opin.
Biotechnol., 23 (2012) 878–883.
- A. Bateman, D. Van Der Horst, D. Boardman, A. Kansal,
C. Carliell-Marquet, Closing the phosphorus loop in England:
the spatio-temporal balance of phosphorus capture from
manure versus crop demand for fertiliser, Resour. Conserv.
Recycl., 55 (2011) 1146–1153.
- M. Zaman, M. Kim, G. Nakhla, A. Singh, F. Yang, Enhanced
biological phosphorus removal using thermal alkaline
hydrolyzed municipal wastewater biosolids, J. Environ. Sci.,
86 (2019) 164–174.
- L. Spinosa, From sludge to resources through biosolids,
Water Sci. Technol., 50 (2004) 1–9.
- M.K. Winkler, L. Straka, New directions in biological
nitrogen removal and recovery from wastewater, Curr. Opin.
Biotechnol., 57 (2019) 50–55.
- C. Wan, S. Ding, C. Zhang, X. Tan, W. Zou, X. Liu, X. Yang,
Simultaneous recovery of nitrogen and phosphorus from
sludge fermentation liquid by zeolite adsorption: mechanism
and application, Sep. Purif. Technol., 180 (2017) 1–12.
- G. Provolo, F. Perazzolo, G. Mattachini, A. Finzi, E. Naldi,
E. Riva, Nitrogen removal from digested slurries using a
simplified ammonia stripping technique, Waste Manage.,
69 (2017) 154–161.
- K. Yetilmezsoy, Z. Sapci-Zengin, Recovery of ammonium
nitrogen from the effluent of UASB treating poultry manure
wastewater by MAP precipitation as a slow release fertilizer,
J. Hazard. Mater., 166 (2009) 260–269.
- M.I.H. Bhuiyan, D.S. Mavinic, R.D. Beckie, A solubility and
thermodynamic study of struvite, Environ. Technol., 28 (2007)
1015–1026.
- R. Cabeza, B. Steingrobe, W. Römer, N. Claassen, Effectiveness
of recycled P products as P fertilizers, as evaluated in pot
experiments, Nutr. Cycling Agroecosyst., 91 (2011) 173–184.
- P.J. Talboys, J. Heppell, T. Roose, J.R. Healey, D.L. Jones, P.J.
Withers, Struvite: a slow-release fertiliser for sustainable
phosphorus management?, Plant Soil, 401 (2016) 109–123.
- L. Shu, P. Schneider, V. Jegatheesan, J. Johnson, An economic
evaluation of phosphorus recovery as struvite from digester
supernatant, Bioresour. Technol., 97 (2006) 2211–2216.
- J.D. Doyle, K. Oldring, J. Churchley, C. Price, S.A. Parsons,
Chemical control of struvite precipitation, J. Environ. Eng.,
129 (2003) 419–426.
- Y. Ueno, M. Fujii, Three years experience of operating and
selling recovered struvite from full-scale plant, Environ.
Technol., 22 (2010) 1373–1381.
- M.M. Rahman, M.A.M. Salleh, U. Rashid, A. Ahsan,
M.M. Hossain, C.S. Ra, Production of slow release crystal
fertilizer from wastewaters through struvite crystallization – a
review, Arabian J. Chem., 7 (2014) 139–155.
- J.D. Doyle, S.A. Parsons, Struvite formation, control and
recovery, Water Res., 36 (2002) 3925–3940.
- N.C. Bouropoulos, P.G. Koutsoukos, Spontaneous precipitation
of struvite from aqueous solutions, J. Cryst. Growth, 213 (2000)
381–388.
- J.D. Doyle, S.A. Parsons, Struvite formation, control and
recovery, Water Res., 36 (2002) 3925–3940.
- R. Sharp, E. Vadiveloo, R. Fergen, M. Moncholi, P. Pitt, D. Wankmuller,
R. Latimer, A theoretical and practical evaluation of
struvite control and recovery, Water Environ. Res., 85 (2013)
675–686.
- D. Crutchik, J.M. Garrido, Struvite crystallization versus
amorphous magnesium and calcium phosphate precipitation
during the treatment of a saline industrial wastewater,
Water Sci. Technol., 64 (2011) 2460–2467.
- I. Kabdaşli, S.A. Parsons, O. Tünay, Effect of major ions on
induction time of struvite precipitation, Croat. Chem. Acta,
79 (2006) 243–251.
- J.W. Mullin, Crystallization, Elsevier, Oxford, 2001.
- S. Regy, D. Mangin, J.P. Klein, J. Lieto, Phosphate Recovery by
Struvite Precipitation in a Stirred Reactor, Phosphate Recovery
in Wastewater by Crystallization, LAGEP: Internal Report,
CEEP, Lyon, 2002, pp. 54–58.
- H. Saidou, A. Korchef, S. Ben Moussa, M. Ben Amor, Struvite precipitation
by the dissolved CO2 degasification technique: impact
of the airflow rate and pH, Chemosphere, 74 (2009) 338–343.
- M.M. Rahman, M.A.M. Salleh, U. Rashid, A. Ahsan,
M.M. Hossain, C.S. Ra, Production of slow release crystal
fertilizer from wastewaters through struvite crystallization – a
review, Arabian J. Chem., 7 (2014) 139–155.
- N. Krishnamoorthy, B. Dey, Y. Unpaprom, R. Ramaraj, G.P. Maniam,
N. Govindan, S. Jayaraman, T. Arunachalam, B. Paramasivan,
Engineering principles and process designs for phosphorus
recovery as struvite: a comprehensive review, J. Environ. Chem.
Eng., 9 (2021) 105579, doi: 10.1016/j.jece.2021.105579.
- X.D. Hao, C.C. Wang, L. Lan, M.C.M. Van Loosdrecht, Struvite
formation, analytical methods and effects of pH and Ca2+,
Water Sci. Technol., 58 (2008) 1687–1692.
- A. Andrade, R.D. Schuiling, The chemistry of struvite
crystallization, Min. J., 23 (2001) 37–46.
- K.N. Ohlinger, P.E., T.M. Young, E.D. Schroeder, Kinetics effects
on preferential struvite accumulation in wastewater, J. Environ.
Eng., 125 (1999) 730–737.
- I. Çelen, M. Türker, Recovery of ammonia as struvite from
anaerobic digester effluents, Environ. Technol. (United
Kingdom)., 22 (2001) 1263–1272.
- I. Stratful, M.D. Scrimshaw, J.N. Lester, Conditions influencing
the precipitation of magnesium ammonium phosphate,
Water Res., 35 (2001) 4191–4199.
- P. Battistoni, A. De Angelis, P. Pavan, M. Prisciandaro, F. Cecchi,
Phosphorus removal from a real anaerobic supernatant by
struvite crystallization, Water Res., 35 (2001) 2167–2178.
- Z. Ye, Y. Shen, X. Ye, Z. Zhang, S. Chen, J. Shi, Phosphorus
recovery from wastewater by struvite crystallization: property
of aggregates, J. Environ. Sci., 26 (2014) 991–1000.
- A. Matynia, B. Wierzbowska, N. Hutnik, A. Mazienczuk,
A. Kozik, K. Piotrowski, Separation of struvite from mineral
fertilizer industry wastewater, Procedia Environ. Sci., 18 (2013)
766–775.
- K. Yetilmezsoy, Z. Sapci-Zengin, Recovery of ammonium
nitrogen from the effluent of UASB treating poultry manure
wastewater by MAP precipitation as a slow release fertilizer,
J. Hazard. Mater., 166 (2009) 260–269.
- K. Yetilmezsoy, F. Ilhan, Z. Sapci-Zengin, S. Sakar, M.T. Gonullu,
Decolorization and COD reduction of UASB pretreated poultry
manure wastewater by electrocoagulation process: a posttreatment
study, J. Hazard. Mater., 162 (2009) 120–132.
- A. Kozik, N. Hutnik, A. Matynia, J. Gluzinska, K. Piotrowski,
Recovery of phosphate (V) ions from liquid waste solutions
containing organic impurities, Chemik, 65 (2011) 675–686.
- J. Koralewska, K. Piotrowski, B. Wierzbowska, A. Matynia,
Kinetics of reaction-crystallization of struvite in the continuous
draft tube magma type crystallizers-influence of different
internal hydrodynamics, Chin. J. Chem. Eng., 17 (2009) 330–339.
- A. Matynia, B. Wierzbowska, N. Hutnik, A. Mazienczuk,
A. Kozik, K. Piotrowski, Separation of struvite from mineral
fertilizer industry wastewater, Procedia Environ. Sci., 18 (2013)
766–775.
- T. Zhang, L. Ding, H. Ren, Pretreatment of ammonium removal
from landfill leachate by chemical precipitation, J. Hazard.
Mater., 166 (2009) 911–915.
- R. Kumar, P. Pal, Turning hazardous waste into value-added
products: production and characterization of struvite from
ammoniacal waste with new approaches, J. Cleaner Prod.,
43 (2013) 59–70.
- B. Liu, A. Giannis, J. Zhang, V.W.C. Chang, J.Y. Wang,
Characterization of induced struvite formation from sourceseparated
urine using seawater and brine as magnesium
sources, Chemosphere, 93 (2013) 2738–2747.
- D. Kim, J. Kim, H.D. Ryu, S.I. Lee, Effect of mixing on
spontaneous struvite precipitation from semiconductor
wastewater, Bioresour. Technol., 100 (2009) 74–78.
- K. Sathiasivan, J. Ramaswamy, M. Rajesh, Optimization studies
on the production of struvite from human urine – waste into
value, Desal. Water Treat., 155 (2019) 134–144.
- D.M. Rodrigues, R. do Amaral Fragoso, A.P. Carvalho, T. Hein,
A.G. de Brito, Recovery of phosphates as struvite from urinediverting
toilets: optimization of pH, Mg:PO4 ratio and contact
time to improve precipitation yield and crystal morphology,
Water Sci. Technol., 80 (2019) 1276–1286.
- Z. Li, X. Ren, J. Zuo, Y. Liu, E. Duan, J. Yang, P. Chen, Y. Wang,
Struvite precipitation for ammonia nitrogen removal in
7-aminocephalosporanic acid wastewater, Molecules, 17 (2012)
2126–2139.
- J. Koralewska, K. Piotrowski, B. Wierzbowska, A. Matynia,
Kinetics of reaction-crystallization of struvite in the continuous
draft tube magma type crystallizers—influence of different
internal hydrodynamics, Chin. J. Chem. Eng., 17 (2009) 330–339.
- AE. Durrant, M.D. Scrimshaw, I. Stratful, J.N. Lester, Review
of the feasibility of recovering phosphate from wastewater
for use as a raw material by the phosphate industry, Environ.
Technol., 20 (1999) 749–58.
- H.K. Aage, B.L. Andersen, A. Blom, I. Jensen, The solubility of
struvite, J. Radioanal. Nucl. Chem., 223 (1997) 213–215.
- M. Hanhoun, L. Montastruc, C. Azzaro-Pantel, B. Biscans,
M. Frèche, L. Pibouleau, Temperature impact assessment
on struvite solubility product: a thermodynamic modeling
approach, Chem. Eng. J., 167 (2011) 50–58.
- Y.H. Liu, J.H. Kwag, J.H. Kim, C.S. Ra, Recovery of nitrogen
and phosphorus by struvite crystallization from swine
wastewater, Desalination, 277 (2011) 364–369.
- M.I.H. Bhuiyan, D.S. Mavinic, F.A. Koch, Thermal decomposition
of struvite and its phase transition, Chemosphere, 70 (2008)
1347–1356.
- B. Li, I. Boiarkina, W. Yu, H.M. Huang, T. Munir,
G.Q. Wang, B.R. Young, Phosphorous recovery through
struvite crystallization: challenges for future design, Sci. Total
Environ., 648 (2019) 1244–1256.
- R. Kumar, P. Pal, Turning hazardous waste into value-added
products: production and characterization of struvite from
ammoniacal waste with new approaches, J. Cleaner Prod.,
43 (2013) 59–70.
- S. Uludag-Demirer, A study on nutrient removal from municipal
wastewater by struvite formation using Taguchi’s design of
experiments, Environ. Eng. Sci., 25 (2008) 1–10.
- A. Uysal, S. Demir, E. Sayilgan, F. Eraslan, Z. Kucukyumuk,
Optimization of struvite fertilizer formation from baker’s yeast
wastewater: growth and nutrition of maize and tomato plants,
Environ. Sci. Pollut. Res., 21 (2014) 3264–3274.
- B. Li, H.M. Huang, I. Boiarkina, W. Yu, Y.F. Huang,
G.Q. Wang, B.R. Young, Phosphorus recovery through struvite
crystallisation: recent developments in the understanding of
operational factors, J. Environ. Manage., 248 (2019) 109254,
doi: 10.1016/j.jenvman.2019.07.025.
- K.M. Hillman, R.C. Sims, Struvite formation associated with
the microalgae biofilm matrix of a rotating algal biofilm reactor
(RABR) during nutrient removal from municipal wastewater,
Water Sci. Technol., 81 (2020) 644–655.
- L. Edahwati, R. Rendri Anggriawan, Recovery of phosphate and
ammonium from dairy cow urine by struvite crystallization with
vertical reactor, Int. J. Eco-Innovation Sci. Eng., 1 (2020) 30–35.
- S. Shim, S. Won, A. Reza, S. Kim, N. Ahmed, C. Ra, Design and
optimization of fluidized bed reactor operating conditions for
struvite recovery process from swine wastewater, Processes,
8 (2020) 422, doi: 10.3390/pr8040422.
- W. Gong, Y. Li, L. Luo, X. Luo, X. Cheng, H. Liang, Application of
struvite-MAP crystallization reactor for treating cattle manure
anaerobic digested slurry: nitrogen and phosphorus recovery
and crystal fertilizer efficiency in plant trials, Int. J. Environ.
Res. Public Health, 15 (2018) 1397, doi: 10.3390/ijerph15071397.
- P. Zamora, T. Georgieva, I. Salcedo, N. Elzinga, P. Kuntke,
C.J.N. Buisman, Long-term operation of a pilot-scale reactor for
phosphorus recovery as struvite from source-separated urine,
J. Chem. Technol. Biotechnol., 92 (2017) 1035–1045.
- N. Hutnik, B. Wierzbowska, K. Piotrowski, A. Matynia, Effect
of continuous crystallizer performance on struvite crystals
produced in reaction crystallization from solutions containing
phosphate (V) and zinc (II) ions, Braz. J. Chem. Eng., 33 (2016)
307–317.
- M. Cerrillo, J. Palatsi, J. Comas, J. Vicens, A. Bonmatí, Struvite
precipitation as a technology to be integrated in a manure
anaerobic digestion treatment plant – removal efficiency, crystal
characterization and agricultural assessment, J. Chem. Technol.
Biotechnol., 90 (2015) 1135–1143.
- S. Rhoton, M. Grau, C.J. Brouckaert, G. Gounden, C.A. Buckley,
Field Operation of a Simple Struvite Reactor to Produce
Phosphorus Fertiliser From Source-Separated Urine in
eThekwini, WISA Biennal Conference 2014, 25–28 May,
Mbombela, Mpumalanga, South Africa, 2014, pp. 1–5.
- M.P. Huchzermeier, W. Tao, Overcoming challenges to struvite
recovery from anaerobically digested dairy manure, Water
Environ. Res., 84 (2012) 34–41.
- Y.H. Song, G.L. Qiu, P. Yuan, X.Y. Cui, J.F. Peng, P. Zeng,
L. Duan, L.C. Xiang, F. Qian, Nutrients removal and recovery
from anaerobically digested swine wastewater by struvite
crystallization without chemical additions, J. Hazard. Mater.,
190 (2011) 140–149.
- M.M. Rahman, Y.H. Liu, J.H. Kwag, C.S. Ra, Recovery of
struvite from animal wastewater and its nutrient leaching loss
in soil, J. Hazard. Mater., 186 (2011) 2026–2030.
- K.S. Le Corre, E. Valsami-Jones, P. Hobbs, B. Jefferson, S.A. Parsons,
Struvite crystallisation and recovery using a stainless steel
structure as a seed material, Water Res., 41 (2007) 2449–2456.
- M. Ronteltap, M. Maurer, R. Hausherr, W. Gujer, Struvite
precipitation from urine – influencing factors on particle size,
Water Res., 44 (2010) 2038–2046.
- S. Shim, S. Won, A. Reza, S. Kim, N. Ahmed, C. Ra,
Simultaneous removal of pollutants and recovery of nutrients
from high-strength swine wastewater using a novel integrated
treatment process, Animals,10 (2020) 835, doi: 10.3390/ani10050835.
- B. Kim, N. Jang, M. Lee, J.K. Jang, I.S. Chang, Microbial fuel cell
driven mineral rich wastewater treatment process for circular
economy by creating virtuous cycles, Bioresour. Technol.,
320 (2021) 124254, doi: 10.1016/j.biortech.2020.124254.
- C.C. Wang, X.D. Hao, G.S. Guo, M.C.M. van Loosdrecht,
Formation of pure struvite at neutral pH by electrochemical
deposition, Chem. Eng. J., 159 (2010) 280–283.
- S. Ben Moussa, G. Maurin, C. Gabrielli, M. Ben Amor,
Electrochemical precipitation of struvite, Electrochem. Solid-State Lett., 9 (2006) C97, doi: 10.1149/1.2189222.
- L. Pastor, D. Mangin, R. Barat, A. Seco, A pilot-scale study
of struvite precipitation in a stirred tank reactor: conditions
influencing the process, Bioresour. Technol., 99 (2008)
6285–6291.
- L. Kékedy-Nagy, M. Abolhassani, S.I.P. Bakovic, Z. Anari,
J.P. Moore II, B.G. Pollet, L.F. Greenlee, Electroless production
of fertilizer (struvite) and hydrogen from synthetic
agricultural wastewaters, J. Am. Chem. Soc., 142 (2020)
18844–18858.
- X. Zhou, Y. Chen, An integrated process for struvite
electrochemical precipitation and ammonia oxidation of
sludge alkaline hydrolysis supernatant, Environ. Sci. Pollut.
Res., 26 (2019) 2435–2444.
- X.Z. Li, Q.L. Zhao, X.D. Hao, Ammonium removal from
landfill leachate by chemical precipitation, Waste Manage.,
19 (1999) 409–415.
- I. Çelen, J.R. Buchanan, R.T. Burns, R. Bruce Robinson,
D. Raj Raman, Using a chemical equilibrium model to predict
amendments required to precipitate phosphorus as struvite
in liquid swine manure, Water Res., 41 (2007) 1689–1696.
- C. Di Iaconi, M. Pagano, R. Ramadori, A. Lopez, Nitrogen
recovery from a stabilized municipal landfill leachate,
Bioresour. Technol., 101 (2010) 1732–1736.
- Y.J. Shih, R.R.M. Abarca, M.D.G. de Luna, Y.H. Huang,
M.C. Lu, Recovery of phosphorus from synthetic wastewaters
by struvite crystallization in a fluidized-bed reactor: effects
of pH, phosphate concentration and coexisting ions,
Chemosphere, 173 (2017) 466–473.
- H. Huang, P. Zhang, Z. Zhang, J. Liu, J. Xiao, F. Gao,
Simultaneous removal of ammonia nitrogen and
recovery of phosphate from swine wastewater by struvite
electrochemical precipitation and recycling technology,
J. Cleaner Prod., 127 (2016) 302–310.
- Ş. İrdemez, Z. Bingül, S. Kul, F.E. Torun, N. Demircioğlu, The
effect of supporting electrolyte type and concentration on the
phosphate removal from water by electrocoagulation method
using iron electrodes, NOHU J. Eng. Sci., 11 (2022) 25–30.
- Y. Liu, S. Kumar, J. Kwag, J. Kim, J. Kim, C. Ra, Recycle of
electrolytically dissolved struvite as an alternative to enhance
phosphate and nitrogen recovery from swine wastewater,
J. Hazard. Mater., 195 (2011) 175–181.
- L. Kékedy-Nagy, A. Teymouri, A.M. Herring, L.F. Greenlee,
Electrochemical removal and recovery of phosphorus as
struvite in an acidic environment using pure magnesium
vs. the AZ31 magnesium alloy as the anode, Chem. Eng. J.,
380 (2020) 122480, doi: 10.1016/j.cej.2019.122480.
- X. Tan, R. Yu, G. Yang, F. Wei, L. Long, F. Shen, J. Wu, Y. Zhang,
Phosphate recovery and simultaneous nitrogen removal from
urine by electrochemically induced struvite precipitation,
Environ. Sci. Pollut. Res., 28 (2021) 5625–5636.
- D.J. Kruk, M. Elektorowicz, J.A. Oleszkiewicz, Struvite
precipitation and phosphorus removal using magnesium
sacrificial anode, Chemosphere, 101 (2014) 28–33.
- A. Hug, K.M. Udert, Struvite precipitation from urine with
electrochemical magnesium dosage, Water Res., 47 (2013)
289–299.
- P. Cognet, A.M. Wilhelm, H. Delmas, H. Aït Lyazidi, P.L. Fabre,
Ultrasound in organic electrosynthesis, Ultrason. Sonochem.,
7 (2000) 163–167.
- F. Foroughi, L. Kékedy-Nagy, M.H. Islam, J.J. Lamb,
L.F. Greenlee, B.G. Pollet, The use of ultrasound for the
electrochemical synthesis of magnesium ammonium
phosphate hexahydrate (struvite), ECS Trans., 92 (2019) 47–55.
- Z. Zhang, L. She, J. Zhang, Z. Wang, P. Xiang, S. Xia,
Electrochemical acidolysis of magnesite to induce struvite
crystallization for recovering phosphorus from aqueous
solution, Chemosphere, 226 (2019) 307–315.
- X. Li, X. Zhao, X. Zhou, B. Yang, Phosphate recovery from
aqueous solution via struvite crystallization based on electrochemical decomposition of nature magnesite, J. Cleaner
Prod., 292 (2021) 126039, doi: 10.1016/j.jclepro.2021.126039.
- S. Ren, M. Li, J. Sun, Y. Bian, K. Zuo, X. Zhang, P. Liang,
X. Huang, A novel electrochemical reactor for nitrogen and
phosphorus recovery from domestic wastewater, Front.
Environ. Sci. Eng., 11 (2017) 1–6.
- J.H. Kim, B. Min An, D.H. Lim, J.Y. Park, Electricity production
and phosphorous recovery as struvite from synthetic
wastewater using magnesium-air fuel cell electrocoagulation,
Water Res., 132 (2018) 200–210.
- K. Rajaniemi, T. Hu, E.-T. Nurmesniemi, S. Tuomikoski,
U. Lassi, Phosphate and ammonium removal from water
through electrochemical and chemical precipitation of
struvite, Processes, 9 (2021) 150, doi: 10.3390/pr9010150.
- R. Mores, H. Treichel, C. Augusto Zakrzevski, A. Kunz,
J. Steffens, R. Marcos Dallago, Remove of phosphorous
and turbidity of swine wastewater using electrocoagulation
under continuous flow, Sep. Purif. Technol., 171 (2016)
112–117.
- I. Kabdaşlı, I. Arslan-Alaton, T. Ölmez-Hancı, O. Tünay,
Electrocoagulation applications for industrial wastewaters:
a critical review, Environ. Technol. Rev., 1 (2012) 2–45.
- J.H. Kim, B. Min An, D.H. Lim, J.Y. Park, Electricity production
and phosphorous recovery as struvite from synthetic
wastewater using magnesium-air fuel cell electrocoagulation,
Water Res., 132 (2018) 200–210.
- F. Prieto García, J. Callejas, E. Reyes-Cruz, Y. Marmolejo,
Recovery and characterization of struvite from sediment
and sludge resulting from the process of acid whey
electrocoagulation, Asian J. Chem., 25 (2013) 8005–8009.
- H. Inan, E. Alaydın, Phosphate and nitrogen removal by iron
produced in electrocoagulation reactor, Desal. Water Treat.,
52 (2014) 1396–1403.
- X. Zheng, H.-N. Kong, D. Wu, C. Wang, Y. Li, H. Ye, Phosphate
removal from source separated urine by electrocoagulation
using iron plate electrodes, Water Sci. Technol., 60 (2009)
2929–2938.
- S. Nazari, A.A. Zinatizadeh, M. Mirghorayshi, M.C.M. van
Loosdrecht, Waste or gold? bioelectrochemical resource
recovery in source-separated urine, Trends Biotechnol.,
38 (2020) 990–1006.
- Y.V. Nancharaiah, S. Venkata Mohan, P.N.L. Lens, Recent
advances in nutrient removal and recovery in biological and
bioelectrochemical systems, Bioresour. Technol., 215 (2016)
173–185.
- D.P. Lies, M.E. Hernandez, A. Kappler, R.E. Mielke,
J.A. Gralnick, D.K. Newman, Shewanella oneidensis MR-1
uses overlapping pathways for iron reduction at a distance
and by direct contact under conditions relevant for biofilms,
Appl. Environ. Microbiol., 71 (2005) 4414–4426.
- J.C. Biffinger, J. Pietron, R. Ray, B. Little, B.R. Ringeisen,
A biofilm enhanced miniature microbial fuel cell using
Shewanella oneidensis DSP10 and oxygen reduction cathodes,
Biosens. Bioelectron., 22 (2007) 1672–1679.
- H.J. Kim, S.H. Moon, H.K. Byung, A microbial fuel cell
type lactate biosensor using a metal-reducing bacterium,
Shewanella putrefaciens, J. Microbiol. Biotechnol., 9 (1999)
365–367.
- D.R. Bond, D.R. Lovley, Electricity production by Geobacter
sulfurreducens attached to electrodes, Appl. Environ.
Microbiol., 69 (2003) 1548–1555.
- D.R. Lovley, The microbe electric: conversion of organic matter
to electricity, Curr. Opin. Biotechnol., 19 (2008) 564–571.
- W.W. Li, H.Q. Yu, Z. He, Towards sustainable wastewater
treatment by using microbial fuel cells-centered technologies,
Energy Environ. Sci., 7 (2014) 911–924.
- Y. Jaffer, T.A. Clark, P. Pearce, S.A. Parsons, Potential
phosphorus recovery by struvite formation, Water Res.,
36 (2002) 1834–1842.
- G.-L. Zang, G.-P. Sheng, W.-W. Li, Z.-H. Tong, R.J. Zeng, C. Shi,
H.-Q. Yu, Nutrient removal and energy production in a urine
treatment process using magnesium ammonium phosphate
precipitation and a microbial fuel cell technique, Phys. Chem.
Chem. Phys.,14 (2012) 1978–1984.
- Y. Ye, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu,
B. jie Ni, X. Zhang, Microbial fuel cell for nutrient recovery
and electricity generation from municipal wastewater under
different ammonium concentrations, Bioresour. Technol.,
292 (2019) 121992, doi: 10.1016/j.biortech.2019.121992.
- F. Fischer, C. Bastian, M. Happe, E. Mabillard, N. Schmidt,
Microbial fuel cell enables phosphate recovery from digested
sewage sludge as struvite, Bioresour. Technol., 102 (2011)
5824–5830.
- K. Hirooka, O. Ichihashi, Phosphorus recovery from artificial
wastewater by microbial fuel cell and its effect on power
generation, Bioresour. Technol., 137 (2013) 368–375.
- O. Ichihashi, K. Hirooka, Removal and recovery of phosphorus
as struvite from swine wastewater using microbial fuel
cell, Bioresour. Technol., 114 (2012) 303–307.
- C. Santoro, I. Ieropoulos, J. Greenman, P. Cristiani, T. Vadas,
A. Mackay, B. Li, Power generation and contaminant removal
in single chamber microbial fuel cells (SCMFCs) treating
human urine, Int. J. Hydrogen Energy, 38 (2013) 11543–11551.
- Q. Tao, S. Zhou, J. Luo, J. Yuan, Nutrient removal and
electricity production from wastewater using microbial fuel
cell technique, Desalination, 365 (2015) 92–98.
- J. You, J. Greenman, C. Melhuish, I. Ieropoulos, Electricity
generation and struvite recovery from human urine using
microbial fuel cells, J. Chem. Technol. Biotechnol., 91 (2016)
647–654.
- P. Sharma, G.V. Talekar, S. Mutnuri, Demonstration of energy
and nutrient recovery from urine by field-scale microbial fuel
cell system, Process Biochem., 101 (2021) 89–98.
- I. Merino-Jimenez, V. Celorrio, D.J. Fermin, J. Greenman,
I. Ieropoulos, Enhanced MFC power production and struvite
recovery by the addition of sea salts to urine, Water Res.,
109 (2017) 46–53.
- Z. Yang, H. Pei, Q. Hou, L. Jiang, L. Zhang, C. Nie, Algal
biofilm-assisted microbial fuel cell to enhance domestic
wastewater treatment: nutrient, organics removal and
bioenergy production, Chem. Eng. J., 332 (2018) 277–285.
- B. Li, D. Xu, L. Feng, Y. Liu, L. Zhang, Advances and prospects
on the aquatic plant coupled with sediment microbial fuel cell
system, Environ. Pollut., 297 (2022) 118771, doi: 10.1016/j.envpol.2021.118771.
- B.E. Logan, D. Call, S. Cheng, H.V.M. Hamelers,
T.H.J.A. Sleutels, A.W. Jeremiasse, R.A. Rozendal, Microbial
electrolysis cells for high yield hydrogen gas production from
organic matter, Environ. Sci. Technol., 42 (2008) 8630–8640.
- R.D. Cusick, B.E. Logan, Phosphate recovery as struvite
within a single chamber microbial electrolysis cell, Bioresour.
Technol., 107 (2012) 110–115.
- R.D. Cusick, M.L. Ullery, B.A. Dempsey, B.E. Logan,
Electrochemical struvite precipitation from digestate with a
fluidized bed cathode microbial electrolysis cell, Water Res.,
54 (2014) 297–306.
- Z. Wang, J. Zhang, X. Guan, L. She, P. Xiang, S. Xia, Z. Zhang,
Bioelectrochemical acidolysis of magnesia to induce struvite
crystallization for recovering phosphorus from aqueous
solution, J. Environ. Sci., 85 (2019) 119–128.
- M. Cerrillo, L. Burgos, J. Noguerol, V. Riau, A. Bonmatí,
Ammonium and phosphate recovery in a three chambered
microbial electrolysis cell: towards obtaining struvite from
livestock manure, Processes, 9 (2021) 1916, doi: 10.3390/pr9111916.
- A. Almatouq, A.O. Babatunde, Concurrent hydrogen
production and phosphorus recovery in dual chamber
microbial electrolysis cell, Bioresour. Technol.,237 (2017)
193–203.
- M.Z. Khan, A.S. Nizami, M. Rehan, O.K.M. Ouda, S. Sultana,
I.M. Ismail, K. Shahzad, Microbial electrolysis cells for
hydrogen production and urban wastewater treatment: a case
study of Saudi Arabia, Appl. Energy, 185 (2017) 410–420.
- Y. Ye, H. Hao Ngo, W. Guo, Y. Liu, S.W. Chang, D. Nguyen,
J. Ren, Y. Liu, X. Zhang, Feasibility study on a double chamber
microbial fuel cell for nutrient recovery from municipal
wastewater, Chem. Eng. J., 358 (2018) 236–242.