References

  1. M. Pimentel, N. Oturan, M. Dezotti, M.A. Oturan, Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, Appl. Catal., B, 83 (2008) 140–149.
  2. T. Lian, N. Yang, Y. Yu, D. Huang, Y. Pang, Preliminary Study on Advanced Oxidation Degradation and Determination of Simulated Phenol Wastewater, Education Teaching Forum, 705 Union Road, Shijiazhuang, Hebei Province, China, 2015, pp. 229–230.
  3. T. Wang, H. Zhao, H. Wang, B. Liu, C. Li, Research on degradation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment, Chemosphere, 155 (2016) 94–99.
  4. A. Dargahi, M.R. Samarghandi, A. Shabanloo, M.M. Mahmoudi, H.Z. Nasab, Statistical modeling of phenolic compounds adsorption onto low-cost adsorbent prepared from aloe vera leaves wastes using CCD-RSM optimization: effect of parameters, isotherm, and kinetic studies, Biomass Convers. Biorefin., (2021), doi:10.1007/s13399-021-01601-y.
  5. Q. Guan, C. Wei, X.S. Chai, Pathways and kinetics of partial oxidation of phenol in supercritical water, Chem. Eng. J., 175 (2011) 201–206.
  6. S. Roy, D.K. Mondal, Kinetics study of catalytic wet oxidation of phenol over novel ceria promoted mesoporous silica supported Ru-Fe3O4 catalyst, Chem. Eng. Res. Des., 182 (2022) 120–132.
  7. A. Almasi, M. Mahmoudi, M. Mohammadi, A. Dargahi, H. Biglari, Optimizing biological treatment of petroleum industry wastewater in a facultative stabilization pond for simultaneous removal of carbon and phenol, Toxin Rev., 40 (2021) 189–197.
  8. J. Liu, Review of research on phenol wastewater treatment technology, Environ. Sci. Manage., 43 (2018) 111–114.
  9. J. Liu, Y. Zhang, L. Zhang, L. Hua, G. Zeng, C. Yang, Research progress in the treatment technologies of industrial wastewater containing phenol, Ind. Water Treat., 38 (2018) 12–16.
  10. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 21 (2014) 8336–8367.
  11. S. Garcia-Segura, J.D. Ocon, M.N. Chong, Electrochemical oxidation remediation of real wastewater effluents — a review, Process Saf. Environ. Prot., 113 (2018) 48–67.
  12. Z.Y. Bian, Y. Bian, H. Wang, L. Pang, A.Z. Ding, Electrocatalytic degradation kinetic of 4-chlorophenol by the Pd/C gasdiffusion electrode system, Water Sci. Technol., 67 (2013) 1873–1879.
  13. N.D. Mu’azu, M.H. Al-Malack, N. Jarrah, Electrochemical oxidation of low phenol concentration on boron doped diamond anodes: optimization via response surface methodology, Desal. Water Treat., 52 (2014) 7293–7305.
  14. J. An, N. Li, Y. Wu, S. Wang, C. Liao, Q. Zhao, L. Zhou, T. Li, X. Wang, Y. Feng, Revealing Decay mechanisms of H2O2-based electrochemical advanced oxidation processes after long-term operation for phenol degradation, Environ. Sci. Technol., 54 (2020) 10916–10925.
  15. A. D’Angelo, M. Tedesco, A. Cipollina, A. Galia, G. Micale, O. Scialdone, Reverse electrodialysis performed at pilot plant scale: evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater, Water Res., 125 (2017) 123–131.
  16. J. Luque Di Salvo, A. Cosenza, A. Tamburini, G. Micale, A. Cipollina, Long-run operation of a reverse electrodialysis system fed with wastewaters, J. Environ. Manage., 217 (2018) 871–887.
  17. Y. Zhou, K. Zhao, C. Hu, H. Liu, Y. Wang, J. Qu, Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis, Electrochim. Acta, 269 (2018) 128–135.
  18. J. Li, C. Zhang, K. Liu, L. Yin, X. Kong, Experimental study on salinity gradient energy recovery from desalination seawater based on RED, Energy Convers. Manage., 244 (2021) 114475, doi:10.1016/j.enconman.2021.114475.
  19. J. Hu, S. Xu, X. Wu, D. Wu, D. Jin, P. wang, Q. Leng, Multi-stage reverse electrodialysis: Strategies to harvest salinity gradient energy, Energy Convers. Manage., 183 (2019) 803–815.
  20. O. Scialdone, A. D’Angelo, E. De Lumè, A. Galia, Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients, Electrochim. Acta, 137 (2014) 258–265.
  21. O. Scialdone, A. D’Angelo, A. Galia, Energy generation and abatement of Acid Orange 7 in reverse electrodialysis cells using salinity gradients, J. Electroanal. Chem., 738 (2015) 61–68.
  22. P. Ma, X. Hao, F. Proietto, A. Galia, O. Scialdone, Assisted reverse electrodialysis for CO2 electrochemical conversion and treatment of wastewater: a new approach towards more ecofriendly processes using salinity gradients, Electrochim. Acta, 354 (2020) 136733, doi: 10.1016/j.electacta.2020.136733.
  23. A. D’Angelo, A. Galia, O. Scialdone, Cathodic abatement of Cr(VI) in water by microbial reverse-electrodialysis cells, J. Electroanal. Chem., 748 (2015) 40–46.
  24. S. Xu, Q. Leng, D. Jin, X. Wu, Z. Xu, P. Wang, D. Wu, F. Dong, Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy, Desalination, 495 (2020) 114541, doi: 10.1016/j.desal.2020.114541.
  25. S. Xu, Q. Leng, X. Wu, Z. Xu, J. Hu, D. Wu, F. Dong, P. Wang, Experimental investigate on the joint degradation for Acid Orange 7 by anode and cathode in RED reactor, Acta Sci. Circumstantiae, 39 (2019) 2163–2171.
  26. J.H. Han, H. Kim, K.S. Hwang, N. Jeong, C.S. Kim, Hydrogen production from water electrolysis driven by high membrane voltage of reverse electrodialysis, J. Electrochem. Sci. Technol., 10 (2019) 302–312.
  27. Y. Feng, L. Yang, J. Liu, B.E. Logan, Electrochemical technologies for wastewater treatment and resource reclamation, Environ. Sci. Water Res. Technol., 2 (2016) 800–831.
  28. C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review, Chem. Rev., 115 (2015) 13362–13407.
  29. O. Ganzenko, N. Oturan, D. Huguenot, E.D. Van Hullebusch, G. Esposito, M.A. Oturan, Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: effects of operating parameters on removal efficiency, Sep. Purif. Technol., 156 (2015) 987–995.
  30. S. Wang, S. Xu, X. Wu, X. Zhang, Q. Leng, D. Jin, P. Wang, D. Wu, Degradation of phenol in wastewater by the cathodic and anodic independent loops of REDR powered by concentration gradient energy, Chin. J. Environ. Eng., 15 (2021) 886–897.
  31. Q. Leng, S. Xu, X. Wu, S. Wang, D. Jin, P. Wang, Degradation of methyl orange dye wastewater by a reverse electrodialysis reactor, Acta Sci. Circumstantiae, 41 (2021) 3157–3165.
  32. R. Long, B. Li, Z. Liu, W. Liu, Performance analysis of reverse electrodialysis stacks: channel geometry and flow rate optimization, Energy, 158 (2018) 427–436.
  33. A.S. Fajardo, A.J. dos Santos, E.C.T. de Araújo Costa, D.R. da Silva, C.A. Martínez-Huitle, Effect of anodic materials on solar photoelectro-Fenton process using a diazo dye as a model contaminant, Chemosphere, 225 (2019) 880–889.
  34. J. Lei, Z. Xu, X. Yuan, H. Xu, D. Qiao, Z. Liao, W. Yan, Y. Wang, Linear attenuation current input mode: a novel power supply mode for electrochemical oxidation process, J. Water Process Eng., 36 (2020) 101305, doi:10.1016/j.jwpe.2020.101305.
  35. J. Hu, S. Xu, X. Wu, S. Wang, X. Zhang, S. Yang, R. Xi, D. Wu, L. Xu, Experimental investigation on the performance of series control multi-stage reverse electrodialysis, Energy Convers. Manage., 204 (2020) 112284, doi: 10.1016/j.enconman.2019.112284.
  36. W. Zhang, B. Han, R.A. Tufa, C. Tang, X. Liu, G. Zhang, J. Chang, R. Zhang, R. Mu, C. Liu, D. Song, J. Li, J. Ma, Y. Zhang, Tracing the impact of stack configuration on interface resistances in reverse electrodialysis by in situ electrochemical impedance spectroscopy, Front. Environ. Sci. Eng., 16 (2022) 46,
    doi: 10.1007/s11783-021-1480-9.
  37. E. Brillas, C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal., B, 166–167 (2015) 603–643.
  38. D. Kubo, Y. Kawase, Hydroxyl radical generation in electro-Fenton process with in situ electro-chemical production of Fenton reagents by gas-diffusion-electrode cathode and sacrificial iron anode, J. Cleaner Prod., 203 (2018) 685–695.
  39. Y.Y. Chu, Y. Qian, W.J. Wang, X.L. Deng, A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation, J. Hazard. Mater., 199–200 (2012) 179–185.
  40. L.R.D. Brito, S.O. Ganiyu, E.V. dos Santos, M.A. Oturan, C.A. Martínez-Huitle, Removal of antibiotic rifampicin from aqueous media by advanced electrochemical oxidation: role of electrode materials, electrolytes and real water matrices, Electrochim. Acta, 396 (2021) 139254, doi: 10.1016/j.electacta.2021.139254.
  41. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109 (2009) 6541–6569.
  42. X. Qin, K. Zhao, X. Quan, P. Cao, S. Chen, H. Yu, Highly efficient metal-free electro-Fenton degradation of organic contaminants on a bifunctional catalyst, J. Hazard. Mater., 416 (2021) 125859, doi: 10.1016/j.jhazmat.2021.125859.
  43. J. Lei, Z. Xu, H. Xu, D. Qiao, Z. Liao, W. Yan, Y. Wang, Pulsed electrochemical oxidation of acid Red G and crystal violet by PbO2 anode, J. Environ. Chem. Eng., 8 (2020) 103773, doi: 10.1016/j.jece.2020.103773.
  44. J. Hu, S. Xu, X. Wu, D. Wu, D. Jin, P. Wang, Q. Leng, Theoretical simulation and evaluation for the performance of the hybrid multi-effect distillation—reverse electrodialysis power generation system, Desalination, 443 (2018) 172–183.
  45. B. Zhao, H. Yu, Y. Liu, Y. Lu, W. Fan, W. Qin, M. Huo, Enhanced photoelectrocatalytic degradation of acetaminophen using a bifacial electrode of praseodymium-polyethylene glycol-PbO2//Ti//TiO2-nanotubes, Chem. Eng. J., 410 (2021) 128337, doi: 10.1016/j.cej.2020.128337.
  46. A.S. Fajardo, R.C. Martins, C.A. Martínez-Huitle, R.M. Quinta-Ferreira, Treatment of Amaranth dye in aqueous solution by using one cell or two cells in series with active and non-active anodes, Electrochim. Acta, 210 (2016) 96–104.
  47. E. do Vale-Júnior, D.R. da Silva, A.S. Fajardo, C.A. Martínez-Huitle, Treatment of an azo dye effluent
    by peroxi-coagulation and its comparison to traditional electrochemical advanced processes, Chemosphere, 204 (2018) 548–555.