References

  1. S.M. Al-Jubouri, H.A. Al-Jendeel, S.A. Rashid, S. Al-Batty, Antibiotics adsorption from contaminated water by composites of ZSM-5 zeolite nanocrystals coated carbon, J. Water Process Eng., 47 (2022) 102745, doi: 10.1016/j.jwpe.2022.102745.
  2. J.J. Alvear-Daza, G.A. Pasquale, J.A. Rengifo-Herrera, G.P. Romanelli, L.R. Pizzio, Mesoporous activated carbon from sunflower shells modified with sulfonic acid groups as solid acid catalyst for itaconic acid esterification, Catal. Today, 372 (2021) 51–58.
  3. D.R. Lima, E.C. Lima, C.S. Umpierres, P.S. Thue, G.A. El-Chaghaby, R.S. da Silva, F.A. Pavan, S.L.P. Dias, C. Biron, Removal of amoxicillin from simulated hospital effluents by adsorption using activated carbons prepared from capsules of cashew of Para, Environ. Sci. Pollut. Res., 26 (2019) 16396–16408.
  4. J.M. Chaba, P.N. Nomngongo, Effective adsorptive removal of amoxicillin from aqueous solutions and wastewater samples using zinc oxide coated carbon nanofiber composite, Emerging Contam., 5 (2019) 143–149.
  5. D. Balarak, Z. Taheri, M.J. Shim, S.-M. Lee, C. Jeon, Adsorption kinetics and thermodynamics and equilibrium of ibuprofen from aqueous solutions by activated carbon prepared from Lemna minor, Desal. Water Treat., 215 (2021) 183–193.
  6. M.H. Alhassani, S.M. Al-Jubouri, H.A. Al-Jendeel, Stabilization of phenol trapped by agricultural waste: a study of the influence of ambient temperature on the adsorbed phenol, Desal. Water Treat., 187 (2020) 266–276.
  7. H. Azarpira, Y. Mahdavi, O. Khaleghi, D. Balarak, Thermodynamic studies on the removal of metronidazole antibiotic by multi-walled carbon nanotubes, Der Pharm. Lett., 8 (2016) 107–113.
  8. Z. Aksu, Ö. Tunç, Application of biosorption for penicillin G removal: comparison with activated carbon, Process Biochem., 40 (2005) 831–847.
  9. E. Kattel, B. Kaur, M. Trapido, N. Dulova, Persulfate-based photodegradation of a beta-lactam antibiotic amoxicillin in various water matrices, Environ. Technol. (United Kingdom), 41 (2020) 202–210.
  10. A.D. Khatibi, A.H. Mahvi, N. Mengelizadeh, D. Balarak, Adsorption–desorption of tetracycline onto molecularly imprinted polymer: isotherm, kinetics, and thermodynamics studies, Desal. Water Treat., 230 (2021) 240–251.
  11. E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics, Water Res., 43 (2009) 2419–2430.
  12. I. Ali, S. Afshinb, Y. Poureshgh, A. Azari, Y. Rashtbari, A. Feizizadeh, A. Hamzezadeh, M. Fazlzadeh, Green preparation of activated carbon from pomegranate peel coated with zero-valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water, Environ. Sci. Pollut. Res., 27 (2020) 36732–36743.
  13. A. Yazidi, M. Atrous, F. Edi Soetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G. Luiz Dotto, A. Ben Lamine, Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis, Chem. Eng. J., 379 (2020) 122320, doi: 10.1016/j.cej.2019.122320.
  14. R. Andreozzi, M. Canterino, R. Marotta, N. Paxeus, Antibiotic removal from wastewaters: the ozonation of amoxicillin, J. Hazard. Mater., 122 (2005) 243–250.
  15. I.A. Balcioǧlu, M. Ötker, Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes, Chemosphere, 50 (2003) 85–95.
  16. S.-z. Li, X.-y. Li, D.-z. Wang, Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics, Sep. Purif. Technol., 34 (2004) 109–114.
  17. W.T. Mohammed, S.A. Rashid, Phosphorus removal from wastewater using oven-dried alum sludge, Int. J. Chem. Eng., 2012 (2012) 125296, doi: 10.1155/2012/125296.
  18. Z. Shang, Z. Hu, L. Huang, Z. Guo, H. Liu, C. Zhang, Removal of amoxicillin from aqueous solution by zinc acetate modified activated carbon derived from reed, Powder Technol., 368 (2020) 178–189.
  19. D. Balarak, A.H. Mahvi, M.J. Shim, S.M. Lee, Adsorption of ciprofloxacin from aqueous solution onto synthesized NiO: isotherm, kinetic and thermodynamic studies, Desal. Water Treat., 212 (2021) 390–400.
  20. F.Y. AlJaberi, W.T. Mohammed, Effecting of pH parameter on simulated wastewater treatment using electrocoagulation method, J. Eng., 24 (2018) 73–88.
  21. G.A.M. Ali, O.A. Habeeb, H. Algarni, K.F. Chong, CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study, J. Mater. Sci., 54 (2019) 683–692.
  22. K.M. Abed, B.M. Kurji, S.A. Rashid, B.A. Abdulmajeed, Kinetics and thermodynamics of peppermint oil extraction from peppermint leaves, Iraqi J. Chem. Pet. Eng., 20 (2019) 1–6.
  23. D. Balarak, M. Baniasadi, S.M. Lee, M.J. Shim, Ciprofloxacin adsorption onto Azolla filiculoides activated carbon from aqueous solutions, Desal. Water Treat., 218 (2021) 444–453.
  24. S.A. Rashid, Increasing of naphthenes content in naphtha by using Y and zeolite prepared from Iraqi kaolin, J. Eng., 20 (2014) 35–49.
  25. H. Sadegh, G.A.M. Ali, A.S.H. Makhlouf, K.F. Chong, N.S. Alharbi, S. Agarwal, V.K. Gupta, MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency, J. Mol. Liq., 258 (2018) 345–353.
  26. Z. Zou, Y. Tang, C. Jiang, J. Zhang, Efficient adsorption of Cr(VI) on sunflower seed hull derived porous carbon, J. Environ. Chem. Eng., 3 (2015) 898–905.
  27. H. Wang, J. Xu, X. Liu, L. Sheng, Preparation of straw activated carbon and its application in wastewater treatment: a review, J. Cleaner Prod., 283 (2021) 124671, doi: 10.1016/j.jclepro.2020.124671.
  28. B.D. Radhi, W.T. Mohammed, Novel nanocomposite adsorbent for desulfurization of
    4,6-dimethyldibenzothiophene from model fuel, Mater. Today:. Proc., 42 (2021) 2880–2886.
  29. N.M. Hadi, S.A. Rashid, S. Abdalreda, Deep desulfurization of diesel fuel by guard bed adsorption of activated carbon and locally prepared Cu-Y zeolite, J. Eng., 20 (2014) 146–159.
  30. O.A. Habeeb, K. Ramesh, G.A.M. Ali, R. bin M. Yunus, Lowcost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies, Desal. Water Treat., 84 (2017) 205–214.
  31. F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.P. Dias, C. Saucier,
    J.B. da Janaina, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: highly efficient removal of captopril from aqueous solutions, J. Cleaner Prod., 197 (2018) 919–929.
  32. M.R. Cunha, E.C. Lima, N.F.G.M. Cimirro, P.S. Thue, S.L.P. Dias, M.A. Gelesky, G.L. Dotto, G.S. dos Reis, F.A. Pavan, Conversion of Eragrostis plana Nees leaves to activated carbon by microwave-assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions, Environ. Sci. Pollut. Res., 25 (2018) 23315–23327.
  33. A. Bahiraei, J. Behin, Effect of citric acid and sodium chloride on characteristics of sunflower seed
    shell-derived activated carbon, Chem. Eng. Technol., 44 (2021) 1604–1617.
  34. R.M.Y. Omar Abed Habeeb, R. Kanthasamy, G.A.M. Ali, Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater, J. Teknol., 7 (2017) 1–10.
  35. Z. Zou, Y. Tang, C. Jiang, J. Zhang, Efficient adsorption of Cr(VI) on sun flower seed hull derived porous carbon, J. Environ. Chem. Eng., 3 (2015) 898–905.
  36. K.Y. Foo, B.H. Hameed, Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation, Bioresour. Technol., 102 (2011) 9794–9799.
  37. X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao, G.Q. Lu, Preparation of capacitor’s electrode from sunflower seed shell, Bioresour. Technol., 102 (2011) 1118–1123.
  38. Y. Li, H. Shi, C. Liang, K. Yu, Turning waste into treasure: biomass carbon derived from sunflower seed husks used as anode for lithium-ion batteries, Ionics (Kiel), 27 (2021) 1025–1039.
  39. M. Yilmaz, T.J. Al-Musawi, M. Khodadadi Saloot, A.D. Khatibi, M. Baniasadi, D. Balarak, Synthesis of activated carbon from Lemna minor plant and magnetized with iron(III) oxide magnetic nanoparticles and its application in removal of ciprofloxacin, Biomass Convers. Biorefin., (2022), doi: 10.1007/s13399-021-02279-y.
  40. A.H. Omar, K. Ramesh, A.M.A. Gomaa, B.M.Y. Rosli, Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies, J. Wuhan Univ. Technol. Mater. Sci. Ed., 32 (2017) 305–320.
  41. S.K. Theydan, M.J. Ahmed, Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: equilibrium, kinetics, and thermodynamic studies, J. Anal. Appl. Pyrolysis, 97 (2012) 116–122.
  42. S.A.S. Kamel, H.A. Al-Jendeel, W.T. Mohammed, Preparation of solid-super acidic catalyst with improvement physical properties, Mater. Sci. Forum, 1039 (2021) 313–325.
  43. Z. Lin, X. Weng, G. Owens, Z. Chen, Simultaneous removal of Pb(II) and rifampicin from wastewater by iron nanoparticles synthesized by a tea extract, J. Cleaner Prod., 242 (2020) 118476, doi: 10.1016/j.jclepro.2019.118476.
  44. A. Azari, A. Babaei, R. Rezaei-kalantary, A. Esrafili, M. Moazzen, B. Kakavandi, M. Sciences, Nitrate removal from aqueous solution using carbon nanotubes magnetized by nano zerovalent iron, J. Maz. Univ. Med. Sci., 23 (2014) 15–27.
  45. M.J. Ahmed, S.K. Dhedan, Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastesbased activated carbons, Fluid Phase Equilib., 317 (2012) 9–14.
  46. T.J. Al-Musawi, A.H. Mahvi, A.D. Khatibi, D. Balarak, Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles, J. Porous Mater., 28 (2021) 835–852.
  47. H.H. Abdel Ghafar, G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite, Desal. Water Treat., 53 (2015) 2980–2989.
  48. M. Arshadi, M.K. Abdolmaleki, F. Mousavinia, S. Foroughifard, A. Karimzadeh, Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: aging time and mechanism study, J. Colloid Interface Sci., 486 (2017) 296–308.
  49. G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J., 217 (2013) 119–128.
  50. K. Jafari, M. Heidari, O. Rahmanian, Wastewater treatment for amoxicillin removal using magnetic adsorbent synthesized by ultrasound process, Ultrason. Sonochem., 45 (2018) 248–256.
  51. A. Vafaei, A.M. Ghaedi, Z. Avazzadeh, V. Kiarostami, S. Agarwal, V.K. Gupta, Removal of hydrochlorothiazide from molecular liquids using carbon nanotubes: radial basis function neural network modeling and culture algorithm optimization, J. Mol. Liq., 324 (2021) 114766, doi: 10.1016/j.molliq.2020.114766.
  52. S.-x. Zha, Y. Zhou, X. Jin, Z. Chen, The removal of amoxicillin from wastewater using organobentonite, J. Environ. Manage., 129 (2013) 569–576.
  53. K.-H. Park, C.-H. Lee, S.-K. Ryu, X. Yang, Zeta-potentials of oxygen and nitrogen enriched activated carbons for removal of copper ion, Carbon Lett., 8 (2007) 321–325.
  54. M.J. Ahmed, S.K. Theydan, Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwaveinduced KOH and K2CO3 activations, Chem. Eng. J., 211–212 (2012) 200–207.
  55. O.A. Habeeb, K. Ramesh, G.A.M. Ali, R. Bin M. Yunus, Isothermal modelling based experimental study of dissolved hydrogen sulfide adsorption from waste water using eggshell based activated carbon, Malaysian J. Anal. Sci., 21 (2017) 334–345.
  56. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  57. H. Freundlich, Über die Adsorption in Lösungen, Zeitschrift Für Phys. Chemie., 57U (1907) 385–470.
  58. M.I. Temkin, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim. URSS, 12 (1940) 327–356.
  59. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and solid-diffusion kinetics in fixed-bed adsorption under constantpattern conditions, Ind. Eng. Chem. Fundam., 5 (1996) 212–223.
  60. B.H. Hameed, A.A. Rahman, Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material, J. Hazard. Mater., 160 (2008) 576–581.
  61. A. Azari, M. Salari, M.H. Dehghani, M. Alimohammadi, H. Ghaffari, K. Sharafi, N. Shariatifar, M. Baziar, Efficiency of magnitized graphene oxide nanoparticles in removal of 2,4-dichlorophenol from aqueous solution, J. Maz. Univ. Med. Sci., 26 (2017) 265–281.
  62. Z. Hu, M.P. Srinivasan, Preparation of high-surface-area activated carbons from coconut shell, Microporous Mesoporous Mater., 27 (1999) 11–18.
  63. M. Salari, M.H. Dehghani, A. Azari, M.D. Motevalli, A. Shabanloo, I. Ali, High performance removal of phenol from aqueous solution by magnetic chitosan based on response surface methodology and genetic algorithm, J. Mol. Liq., 285 (2019) 146–157.
  64. R. Khosravi, H. Hossini, M. Heidari, M. Fazlzadeh, H. Biglari, A. Taghizadeh, B. Barikbin, Electrochemical decolorization of reactive dye from synthetic wastewater by mono-polar aluminum electrodes system, Int. J. Electrochem. Sci., 12 (2017) 4745–4755.
  65. A. Chandrasekaran, C. Patra, S. Narayanasamy, S. Subbiah, Adsorptive removal of ciprofloxacin and amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora, Environ. Res., 188 (2020) 109825, doi: 10.1016/j.envres.2020.109825.
  66. O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O. Santos Júnior, J.V. Visentainer, V.C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies, Chem. Eng. J., 288 (2016) 778–788.
  67. D.L.C. Rodrigues, F.M. Machado, A.G. Osório, C.F. de Azevedo, E.C. Lima, R.S. da Silva, D.R. Lima, F.M. Gonçalves, Adsorption of amoxicillin onto high surface area–activated carbons based on olive biomass: kinetic and equilibrium studies, Environ. Sci. Pollut. Res., 27 (2020) 41394–41404.
  68. K. Sharafi, M. Pirsaheb, R. Davoodi, H.R. Ghaffari, M. Fazlzadeh, M. Karimaei, M. Miri, K. Dindarloo, A. Azari, H. Arfaeinia, Quantitative microbial risk assessment of giardia cyst and ascaris egg in effluent of wastewater treatment plants used for agriculture irrigation – a case study, Desal. Water Treat., 80 (2017) 142–148.
  69. S. Lagergreen, B. Svenska, Zur Theorie der sogenannten Adsorption gelöster Stoffe, Zeitschr f Chem und Ind der Kolloide, 15 (1907), doi: 10.1007/BF01501332.
  70. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  71. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–59.
  72. O.A. Habeeb, K. Ramesh, G.A.M. Ali, R. Bin M. Yunus, Isotherm, kinetic and thermodynamic of Reactive Blue 5 (RB5) dye adsorption using Fe3O4 nanoparticles and activated carbon magnetic composite, J. Color Sci. Technol., 7 (2013) 237–248.
  73. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: progress and challenges, Sci. Total Environ., 532 (2015) 112–126.
  74. P. Pachauri, R. Falwariya, S. Vyas, M. Maheshwari, R.K. Vyas, A.B. Gupta, Removal of amoxicillin in wastewater using adsorption by powdered and granular activated carbon and oxidation with hydrogen peroxide, Nat. Environ. Pollut. Technol., 8 (2009) 481–488.