References

  1. T. Wang, Y. Wen, B. Lin, Energy consumption and the influencing factors in China: a nonlinear perspective, J. Cleaner Prod., 249 (2020) 119375, doi: 10.1016/j.jclepro.2019.119375.
  2. M.F. Hanafi, N. Sapawe, A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes, Mater. Today:. Proc., 31 (2020) A141–A150.
  3. L. Cui, Y. Wang, X. Han, P. Xu, F. Wang, D. Liu, H. Zhao, Y. Du, Phenolic resin reinforcement: a new strategy for hollow NiCo@C microboxes against electromagnetic pollution, Carbon, 174 (2021) 673–682.
  4. P. Zong, Y. Cheng, S. Wang, L. Wang, Simultaneous removal of Cd(II) and phenol pollutions through magnetic graphene oxide nanocomposites coated polyaniline using low temperature plasma technique, Int. J. Hydrogen Energy, 45 (2020) 20106–20119.
  5. C. Wang, N. Shao, J. Xu, Z. Zhang, Z. Cai, Pollution emission characteristics, distribution of heavy metals, and particle morphologies in a hazardous waste incinerator processing phenolic waste, J. Hazard. Mater., 388 (2019) 121751, doi: 10.1016/j.jhazmat.2019.121751.
  6. A. Dehbi, Y. Dehmani, H. Omari, A. Lammini, K. Elazhari, S. Abouarnadasse, A. Abdallaoui, Comparative study of malachite green and phenol adsorption on synthetic hematite iron oxide nanoparticles (α-Fe2O3), Surf. Interfaces, 21 (2020) 100637, doi: 10.1016/j.surfin.2020.100637.
  7. M.T. Nakhjiri, G. Bagheri Marandi, M. Kurdtabar, Preparation of magnetic double network nanocomposite hydrogel for adsorption of phenol and p-nitrophenol from aqueous solution, J. Environ. Chem. Eng., 9 (2021) 105039, doi: 10.1016/j. jece.2021.105039.
  8. D. Feng, D. Guo, Y. Zhang, S. Sun, Y. Zhao, Q. Shang, H. Sun, J. Wu, H. Tan, Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption, Chem. Eng. J., 410 (2021) 127707, doi: 10.1016/j.cej.2020.127707.
  9. M.R. Hossain, M.M. Hasan, N-E-Ashrafi, H. Rahman, M.S. Rahman, F. Ahmed, T. Ferdous, M.A. Hossain, Adsorption behaviour of metronidazole drug molecule on the surface of hydrogenated graphene, boron nitride and boron carbide nanosheets in gaseous and aqueous medium: a comparative DFT and QTAIM insight, Physica E, 126 (2021) 114483, doi: 10.1016/j.physe.2020.114483.
  10. X. Zhang, Z. Song, Y. Dou, Y. Xue, Y. Ji, Y. Tang, M. Hu, Removal difference of Cr(VI) by modified zeolites coated with MgAl and ZnAl-layered double hydroxides: efficiency, factors and mechanism, Colloids Surf., A, 621 (2021) 126583, doi: 10.1016/j. colsurfa.2021.126583.
  11. H. Zhang, Z. Jiang, Q. Xia, D. Zhou, Progress and perspective of enzyme immobilization on zeolite crystal materials, Biochem. Eng. J., 172 (2021) 108033, doi: 10.1016/j.bej.2021.108033.
  12. L. Wang, D.D. Dionysiou, J. Lin, Y. Huang, X. Xie, Removal of humic acid and Cr(VI) from water using ZnO–30Nzeolite, Chemosphere, 279 (2021) 130491, doi: 10.1016/j. chemosphere.2021.130491.
  13. S. Wu, Y. Wang, C. Sun, T. Zhao, J. Zhao, Z. Wang, W. Liu, J. Lu, M. Shi, A. Zhao, L. Bu, Z. Wang, M. Yang, Y. Zhi, Novel preparation of binder-free Y/ZSM-5 zeolite composites for VOCs adsorption, Chem. Eng. J., 417 (2021) 129172, doi: 10.1016/j.cej.2021.129172.
  14. C. Li, J. Chen, J. Wang, Z. Ma, P. Han, Y. Luan, A. Lu, Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment, Sci. Total Environ., 521–522 (2015) 101–107.
  15. J. Koelmel, M.N.V. Prasad, G. Velvizhi, S.K. Butti, S.V. Mohan, Chapter 15 – Metalliferous Waste in India and Knowledge Explosion in Metal Recovery Techniques and Processes for the Prevention of Pollution, Environmental Materials and Waste: Resource Recovery and Pollution Prevention, Academic Press, 2016, pp. 339–390, doi: 10.1016/B978-0-12- 803837-6.00015-9.
  16. M.C. Verbraeken, R. Mennitto, V.M. Georgieva, E.L. Bruce, A.G. Greenaway, P.A. Cox, J.G. Min, S.B. Hong, P.A. Wright, S. Brandani, Understanding CO2 adsorption in a flexible zeolite through a combination of structural, kinetic and modelling techniques, Sep. Purif. Technol., 256 (2021) 117846, doi: 10.1016/j. seppur.2020.117846.
  17. S. Zhang, T. Lv, Y. Mu, J. Zheng, C. Meng, High adsorption of Cd(II) by modification of synthetic zeolites Y, A and mordenite with thiourea, Chin. J. Chem. Eng., 28 (2020) 3117–3125.
  18. C.D. Johnson, F. Worrall, Novel granular materials with microcrystalline active surfaces wastewater treatment applications of zeolite/vermiculite composites, Water Res., 41 (2007) 2229–2235.
  19. M. Jiménez-Reyes, P.T. Almazán-Sánchez, M. Solache-Ríos, Radioactive waste treatments by using zeolites. A short review, J. Environ. Radioact., 233 (2021) 106610, doi: 10.1016/j.jenvrad.2021.106610.
  20. A. El-Kordy, A. Elgamouz, E.M. Lemdek, N. Tijani, S.S. Alharthi, A.-N. Kawde, I. Shehadi, Preparation of sodalite and Faujasite clay composite membranes and their utilization in the decontamination of dye effluents, Membranes (Basel), 12 (2022) 1–18, doi: 10.3390/membranes12010012.
  21. A. Lahnafi, A. Elgamouz, N. Tijani, I. Shehadi, Hydrothermal synthesis of zeolite A and Y membrane layers on clay flat disc support and their potential use in the decontamination of water polluted with toxic heavy metals, Desal. Water Treat., 182 (2020) 175–186.
  22. H. Ouallal, Y. Dehmani, H. Moussout, L. Messaoudi, M. Azrour, Kinetic, isotherm and mechanism investigations of the removal of phenols from water by raw and calcined clays, Heliyon, 5 (2019) e01616, doi: 10.1016/j.heliyon.2019.e01616.
  23. S.J. Tshemese, W. Mhike, S.M. Tichapondwa, Adsorption of phenol and chromium (VI) from aqueous solution using exfoliated graphite: equilibrium, kinetics and thermodynamic studies, Arabian J. Chem., 14 (2021) 103160, doi: 10.1016/j.arabjc.2021.103160.
  24. F. Haghdoost, S.H. Bahrami, J. Barzin, A. Ghaee, Preparation and characterization of electrospun polyethersulfone/polyvinylpyrrolidone-zeolite core–shell composite nanofibers for creatinine adsorption, Sep. Purif. Technol., 257 (2021) 117881, doi: 10.1016/j.seppur.2020.117881.
  25. J. Jiang, M. Zhu, Y. Liu, Y. Li, T. Gui, N. Hu, F. Zhang, X. Chen, H. Kita, Influences of synthesis conditions on preparation and characterization of Ti-MWW zeolite membrane by secondary hydrothermal synthesis, Microporous Mesoporous Mater., 297 (2020) 110004, doi: 10.1016/j.micromeso.2020. 110004.
  26. F. Liu, H. Zhang, Y. Yan, T. Wang, Preparation and characterization of Cu and Mn modified beta zeolite membrane catalysts for toluene combustion, Mater. Chem. Phys., 241 (2020) 122322, doi: 10.1016/j.matchemphys.2019.122322.
  27. M.M. Selim, D.M. EL-Mekkawi, R.M.M. Aboelenin, S.A. Sayed Ahmed, G.M. Mohamed, Preparation and characterization of Na-A zeolite from aluminum scrub and commercial sodium silicate for the removal of Cd2+ from water, J. Assoc. Arab Univ. Basic Appl. Sci., 24 (2017) 19–25.
  28. J. Ge, Z. Wu, X. Huang, M. Ding, An effective microwaveassisted synthesis of MOF235 with excellent adsorption of acid chrome blue K, J. Nanomater., 2019 (2019) 4035075, doi: 10.1155/2019/4035075.
  29. J. Zhang, X. Tang, H. Yi, Q. Yu, Y. Zhang, J. Wei, Y. Yuan, Synthesis, characterization and application of Fe-zeolite:
    a review, Appl. Catal., A, 630 (2022) 118467, doi: 10.1016/j.apcata.2021.118467.
  30. S.L. Hailu, B.U. Nair, M. Redi-Abshiro, I. Diaz, M. Tessema, Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants, J. Environ. Chem. Eng., 5 (2017) 3319–3329.
  31. G. Vezzalini, S. Quartieri, E. Galli, A. Alberti, G. Cruciani, and Å. Kvick, Crystal structure of the zeolite mutinaite, the natural analog of ZSM-5, Zeolites, 19 (1997) 323–325.
  32. Y. Li, G. Zhu, Y. Wang, Y. Chai, C. Liu, Preparation, mechanism and applications of oriented MFI zeolite membranes: a review, Microporous Mesoporous Mater., 312 (2021) 110790, doi: 10.1016/j.micromeso.2020.110790.
  33. X. Wang, A. Chen, B. Chen, L. Wang, Adsorption of phenol and bisphenol A on river sediments: effects of particle size, humic acid, pH and temperature, Ecotoxicol. Environ. Saf., 204 (2020) 111093, doi: 10.1016/j.ecoenv.2020.111093.
  34. J.L.V. Lynch, H. Baykara, M. Cornejo, G. Soriano, N.A. Ulloa, Preparation, characterization, and determination of mechanical and thermal stability of natural zeolite-based foamed geopolymers, Constr. Build. Mater., 172 (2018) 448–456.
  35. Z. Sun, Y. Chen, Q. Ke, Y. Yang, J. Yuan, Photocatalytic degradation of cationic azo dye by TiO2/bentonite nanocomposite, J. Photochem. Photobiol., A, 149 (2002) 169–174.
  36. Y.F. Hao, L.G. Yan, H.Q. Yu, K. Yang, S.-j. Yu, R.-r. Shan, B. Du, Comparative study on adsorption of basic and acid dyes by hydroxy-aluminum pillared bentonite, J. Mol. Liq., 199 (2014) 202–207.
  37. Q. Li, X. Gao, Y. Liu, G. Wang, Y.-Y. Li, D. Sano, X. Wang, R. Chen, Biochar and GAC intensify anaerobic phenol degradation via distinctive adsorption and conductive properties, J. Hazard. Mater., 405 (2021) 124183, doi: 10.1016/j.jhazmat.2020.124183.
  38. F.X. Dong, L. Yan, X.H. Zhou, S.T. Huang, J.Y. Liang, W.X. Zhang, Z.W. Guo, P.R. Guo, W. Qian, L.J. Kong, W. Chu,
    Z.H. Diao, Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism, J. Hazard. Mater., 416 (2021) 125930, doi: 10.1016/j.jhazmat.2021.125930.
  39. P. Mishra, K. Singh, U. Dixit, Adsorption, kinetics and thermodynamics of phenol removal by ultrasound-assisted sulfuric acid-treated pea (Pisum sativum) shells, Sustainable Chem. Pharm., 22 (2021) 100491, doi: 10.1016/j.scp.2021.100491.
  40. L. Yingjie, X. Hu, X. Liu, Y. Zhang, Q. Zhao, P. Ning, S. Tian, Adsorption behavior of phenol by reversible surfactantmodified montmorillonite: mechanism, thermodynamics, and regeneration, Chem. Eng. J., 334 (2018) 1214–1221.
  41. M. Keshvardoostchokami, M. Majidi, A. Zamani, B. Liu, Adsorption of phenol on environmentally friendly Fe3O4/chitosan/zeolitic imidazolate framework-8 nanocomposite: optimization by experimental design methodology, J. Mol. Liq., 323 (2021) 115064, doi: 10.1016/j.molliq.2020.115064.
  42. A. Supong, P.C. Bhomick, R. Karmaker, S.L. Ezung, L. Jamir, U.B. Sinha, D. Sinha, Experimental and theoretical insight into the adsorption of phenol and 2,4-dinitrophenol onto Tithonia diversifolia activated carbon, Appl. Surf. Sci., 529 (2020) 147046, doi: 10.1016/j.apsusc.2020.147046.
  43. D.F. Hernández-Barreto, L. Giraldo, J.C. Moreno-Piraján, Dataset on adsorption of phenol onto activated carbons: equilibrium, kinetics and mechanism of adsorption, Data Brief, 32 (2020) 106312, doi: 10.1016/j.dib.2020.106312.
  44. Z. Ghahghaey, M. Hekmati, M. Darvish Ganji, Theoretical investigation of phenol adsorption on functionalized graphene using DFT calculations for effective removal of organic contaminants from wastewater, J. Mol. Liq., 324 (2021) 114777, doi: 10.1016/j.molliq.2020.114777.
  45. H.N. Tran, D.T. Nguyen, G.T. Le, F. Tomul, E.C. Lima, S.H. Woo, A.K. Sarmah, H.Q. Nguyen, P.T. Nguyen, D.D. Nguyen, T.V. Nguyen, S. Vigneswaran, D.-V.N. Vo, H.-P. Chao, Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: a systematic in-depth review, J. Hazard. Mater., 373 (2019) 258–270.
  46. R.I. Yousef, B. El-Eswed, A.H. Al-Muhtaseb, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies, Chem. Eng. J., 171 (2011) 1143–1149.
  47. N. Chaouati, A. Soualah, M. Chater, Adsorption of phenol from aqueous solution onto zeolites y modified by silylation, C.R. Chim., 16 (2013) 222–228.
  48. Y. Yu, Z. Hu, Y. Wang, H. Gao, Magnetic SN-functionalized diatomite for effective removals of phenols, Int. J. Miner. Process., 162 (2017) 1–5.
  49. A. Mandal, S.K. Das, Phenol adsorption from wastewater using clarified sludge from basic oxygen furnace, J. Environ. Chem. Eng., 7 (2019) 103259, doi: 10.1016/j.jece.2019.103259.
  50. S. Arhzaf, M.N. Bennani, S. Abouarnadasse, A. Amhoud, Etude de la basicité de l’hydrotalcite MgAl-CO3 et de son oxyde mixte par adsorption du phénol et par mesure de l’activité catalytique dans la condensation du furfural avec l’acétone, J. Mater. Environ. Sci., 7 (2016) 4226–4236.
  51. S. Richards, A. Bouazza, Phenol adsorption in organo-modified basaltic clay and bentonite, Appl. Clay Sci., 37 (2007) 133–142.
  52. J. Lainé, Y. Foucaud, A. Bonilla-Petriciolet, M. Badawi, Molecular picture of the adsorption of phenol, toluene, carbon dioxide and water on kaolinite basal surfaces, Appl. Surf. Sci., 585 (2022) 152699, doi: 10.1016/j.apsusc.2022.152699.
  53. R. Dong, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Removal of phenol from aqueous solution using acid-modified Pseudomonas putida-sepiolite/ZIF-8 bio-nanocomposites, Chemosphere, 239 (2020) 124708, doi: 10.1016/j.chemosphere.2019.124708.
  54. H. Asnaoui, Y. Dehmani, M. Khalis, E.K. Hachem, Adsorption of phenol from aqueous solutions by Na–bentonite: kinetic, equilibrium and thermodynamic studies, Int. J. Environ. Anal. Chem., 102 (2022) 3043–3057.
  55. X. Liu, Y. Tu, S. Liu, K. Liu, L. Zhang, G. Li, Z. Xu, Adsorption of ammonia nitrogen and phenol onto the lignite surface: an experimental and molecular dynamics simulation study, J. Hazard. Mater., 416 (2021) 125966, doi: 10.1016/j.jhazmat.2021.125966.
  56. A. El Gaidoumi, A. Chaouni Benabdallah, A. Lahrichi, A. Kherbeche, Adsorption du phénol en milieu aqueux par une pyrophyllite marocaine brute et traitée, J. Mater. Environ. Sci., 6 (2015) 2247–2259.