References
- T. Wang, Y. Wen, B. Lin, Energy consumption and the
influencing factors in China: a nonlinear perspective, J. Cleaner
Prod., 249 (2020) 119375, doi: 10.1016/j.jclepro.2019.119375.
- M.F. Hanafi, N. Sapawe, A review on the water problem
associate with organic pollutants derived from phenol, methyl
orange, and remazol brilliant blue dyes, Mater. Today:. Proc.,
31 (2020) A141–A150.
- L. Cui, Y. Wang, X. Han, P. Xu, F. Wang, D. Liu, H. Zhao,
Y. Du, Phenolic resin reinforcement: a new strategy for hollow
NiCo@C microboxes against electromagnetic pollution,
Carbon, 174 (2021) 673–682.
- P. Zong, Y. Cheng, S. Wang, L. Wang, Simultaneous removal of
Cd(II) and phenol pollutions through magnetic graphene oxide
nanocomposites coated polyaniline using low temperature
plasma technique, Int. J. Hydrogen Energy, 45 (2020)
20106–20119.
- C. Wang, N. Shao, J. Xu, Z. Zhang, Z. Cai, Pollution emission
characteristics, distribution of heavy metals, and particle
morphologies in a hazardous waste incinerator processing
phenolic waste, J. Hazard. Mater., 388 (2019) 121751,
doi: 10.1016/j.jhazmat.2019.121751.
- A. Dehbi, Y. Dehmani, H. Omari, A. Lammini, K. Elazhari,
S. Abouarnadasse, A. Abdallaoui, Comparative study of
malachite green and phenol adsorption on synthetic hematite
iron oxide nanoparticles (α-Fe2O3), Surf. Interfaces, 21 (2020)
100637, doi: 10.1016/j.surfin.2020.100637.
- M.T. Nakhjiri, G. Bagheri Marandi, M. Kurdtabar, Preparation
of magnetic double network nanocomposite hydrogel for
adsorption of phenol and p-nitrophenol from aqueous
solution, J. Environ. Chem. Eng., 9 (2021) 105039, doi: 10.1016/j.
jece.2021.105039.
- D. Feng, D. Guo, Y. Zhang, S. Sun, Y. Zhao, Q. Shang, H. Sun,
J. Wu, H. Tan, Functionalized construction of biochar with
hierarchical pore structures and surface O-/N-containing
groups for phenol adsorption, Chem. Eng. J., 410 (2021) 127707,
doi: 10.1016/j.cej.2020.127707.
- M.R. Hossain, M.M. Hasan, N-E-Ashrafi, H. Rahman,
M.S. Rahman, F. Ahmed, T. Ferdous, M.A. Hossain, Adsorption
behaviour of metronidazole drug molecule on the surface
of hydrogenated graphene, boron nitride and boron carbide
nanosheets in gaseous and aqueous medium: a comparative
DFT and QTAIM insight, Physica E, 126 (2021) 114483,
doi: 10.1016/j.physe.2020.114483.
- X. Zhang, Z. Song, Y. Dou, Y. Xue, Y. Ji, Y. Tang, M. Hu, Removal
difference of Cr(VI) by modified zeolites coated with MgAl
and ZnAl-layered double hydroxides: efficiency, factors and
mechanism, Colloids Surf., A, 621 (2021) 126583, doi: 10.1016/j.
colsurfa.2021.126583.
- H. Zhang, Z. Jiang, Q. Xia, D. Zhou, Progress and perspective of
enzyme immobilization on zeolite crystal materials, Biochem.
Eng. J., 172 (2021) 108033, doi: 10.1016/j.bej.2021.108033.
- L. Wang, D.D. Dionysiou, J. Lin, Y. Huang, X. Xie, Removal
of humic acid and Cr(VI) from water using ZnO–30Nzeolite,
Chemosphere, 279 (2021) 130491, doi: 10.1016/j.
chemosphere.2021.130491.
- S. Wu, Y. Wang, C. Sun, T. Zhao, J. Zhao, Z. Wang, W. Liu,
J. Lu, M. Shi, A. Zhao, L. Bu, Z. Wang, M. Yang, Y. Zhi,
Novel preparation of binder-free Y/ZSM-5 zeolite composites
for VOCs adsorption, Chem. Eng. J., 417 (2021) 129172,
doi: 10.1016/j.cej.2021.129172.
- C. Li, J. Chen, J. Wang, Z. Ma, P. Han, Y. Luan, A. Lu, Occurrence
of antibiotics in soils and manures from greenhouse vegetable
production bases of Beijing, China and an associated risk
assessment, Sci. Total Environ., 521–522 (2015) 101–107.
- J. Koelmel, M.N.V. Prasad, G. Velvizhi, S.K. Butti, S.V. Mohan,
Chapter 15 – Metalliferous Waste in India and Knowledge
Explosion in Metal Recovery Techniques and Processes
for the Prevention of Pollution, Environmental Materials
and Waste: Resource Recovery and Pollution Prevention,
Academic Press, 2016, pp. 339–390, doi: 10.1016/B978-0-12-
803837-6.00015-9.
- M.C. Verbraeken, R. Mennitto, V.M. Georgieva, E.L. Bruce,
A.G. Greenaway, P.A. Cox, J.G. Min, S.B. Hong, P.A. Wright,
S. Brandani, Understanding CO2 adsorption in a flexible zeolite
through a combination of structural, kinetic and modelling
techniques, Sep. Purif. Technol., 256 (2021) 117846, doi: 10.1016/j.
seppur.2020.117846.
- S. Zhang, T. Lv, Y. Mu, J. Zheng, C. Meng, High adsorption of
Cd(II) by modification of synthetic zeolites Y, A and mordenite
with thiourea, Chin. J. Chem. Eng., 28 (2020) 3117–3125.
- C.D. Johnson, F. Worrall, Novel granular materials with
microcrystalline active surfaces wastewater treatment
applications of zeolite/vermiculite composites, Water Res.,
41 (2007) 2229–2235.
- M. Jiménez-Reyes, P.T. Almazán-Sánchez, M. Solache-Ríos,
Radioactive waste treatments by using zeolites. A short
review, J. Environ. Radioact., 233 (2021) 106610, doi: 10.1016/j.jenvrad.2021.106610.
- A. El-Kordy, A. Elgamouz, E.M. Lemdek, N. Tijani, S.S. Alharthi,
A.-N. Kawde, I. Shehadi, Preparation of sodalite and Faujasite
clay composite membranes and their utilization in the
decontamination of dye effluents, Membranes (Basel), 12 (2022)
1–18, doi: 10.3390/membranes12010012.
- A. Lahnafi, A. Elgamouz, N. Tijani, I. Shehadi, Hydrothermal
synthesis of zeolite A and Y membrane layers on clay flat disc
support and their potential use in the decontamination of
water polluted with toxic heavy metals, Desal. Water Treat.,
182 (2020) 175–186.
- H. Ouallal, Y. Dehmani, H. Moussout, L. Messaoudi, M. Azrour,
Kinetic, isotherm and mechanism investigations of the
removal of phenols from water by raw and calcined clays,
Heliyon, 5 (2019) e01616, doi: 10.1016/j.heliyon.2019.e01616.
- S.J. Tshemese, W. Mhike, S.M. Tichapondwa, Adsorption
of phenol and chromium (VI) from aqueous solution using
exfoliated graphite: equilibrium, kinetics and thermodynamic
studies, Arabian J. Chem., 14 (2021) 103160, doi: 10.1016/j.arabjc.2021.103160.
- F. Haghdoost, S.H. Bahrami, J. Barzin, A. Ghaee, Preparation
and characterization of electrospun polyethersulfone/polyvinylpyrrolidone-zeolite core–shell composite nanofibers
for creatinine adsorption, Sep. Purif. Technol., 257 (2021)
117881, doi: 10.1016/j.seppur.2020.117881.
- J. Jiang, M. Zhu, Y. Liu, Y. Li, T. Gui, N. Hu, F. Zhang, X. Chen,
H. Kita, Influences of synthesis conditions on preparation
and characterization of Ti-MWW zeolite membrane by
secondary hydrothermal synthesis, Microporous Mesoporous
Mater., 297 (2020) 110004, doi: 10.1016/j.micromeso.2020.
110004.
- F. Liu, H. Zhang, Y. Yan, T. Wang, Preparation and characterization
of Cu and Mn modified beta zeolite membrane
catalysts for toluene combustion, Mater. Chem. Phys.,
241 (2020) 122322, doi: 10.1016/j.matchemphys.2019.122322.
- M.M. Selim, D.M. EL-Mekkawi, R.M.M. Aboelenin, S.A. Sayed
Ahmed, G.M. Mohamed, Preparation and characterization of
Na-A zeolite from aluminum scrub and commercial sodium
silicate for the removal of Cd2+ from water, J. Assoc. Arab Univ.
Basic Appl. Sci., 24 (2017) 19–25.
- J. Ge, Z. Wu, X. Huang, M. Ding, An effective microwaveassisted
synthesis of MOF235 with excellent adsorption of
acid chrome blue K, J. Nanomater., 2019 (2019) 4035075,
doi: 10.1155/2019/4035075.
- J. Zhang, X. Tang, H. Yi, Q. Yu, Y. Zhang, J. Wei, Y. Yuan,
Synthesis, characterization and application of Fe-zeolite:
a review, Appl. Catal., A, 630 (2022) 118467, doi: 10.1016/j.apcata.2021.118467.
- S.L. Hailu, B.U. Nair, M. Redi-Abshiro, I. Diaz, M. Tessema,
Preparation and characterization of cationic surfactant
modified zeolite adsorbent material for adsorption of organic
and inorganic industrial pollutants, J. Environ. Chem. Eng.,
5 (2017) 3319–3329.
- G. Vezzalini, S. Quartieri, E. Galli, A. Alberti, G. Cruciani,
and Å. Kvick, Crystal structure of the zeolite mutinaite, the
natural analog of ZSM-5, Zeolites, 19 (1997) 323–325.
- Y. Li, G. Zhu, Y. Wang, Y. Chai, C. Liu, Preparation, mechanism
and applications of oriented MFI zeolite membranes: a
review, Microporous Mesoporous Mater., 312 (2021) 110790,
doi: 10.1016/j.micromeso.2020.110790.
- X. Wang, A. Chen, B. Chen, L. Wang, Adsorption of phenol and
bisphenol A on river sediments: effects of particle size, humic
acid, pH and temperature, Ecotoxicol. Environ. Saf., 204 (2020)
111093, doi: 10.1016/j.ecoenv.2020.111093.
- J.L.V. Lynch, H. Baykara, M. Cornejo, G. Soriano, N.A. Ulloa,
Preparation, characterization, and determination of mechanical
and thermal stability of natural zeolite-based foamed
geopolymers, Constr. Build. Mater., 172 (2018) 448–456.
- Z. Sun, Y. Chen, Q. Ke, Y. Yang, J. Yuan, Photocatalytic
degradation of cationic azo dye by TiO2/bentonite
nanocomposite, J. Photochem. Photobiol., A, 149 (2002) 169–174.
- Y.F. Hao, L.G. Yan, H.Q. Yu, K. Yang, S.-j. Yu, R.-r. Shan, B. Du,
Comparative study on adsorption of basic and acid dyes by
hydroxy-aluminum pillared bentonite, J. Mol. Liq., 199 (2014)
202–207.
- Q. Li, X. Gao, Y. Liu, G. Wang, Y.-Y. Li, D. Sano, X. Wang,
R. Chen, Biochar and GAC intensify anaerobic phenol
degradation via distinctive adsorption and conductive
properties, J. Hazard. Mater., 405 (2021) 124183, doi: 10.1016/j.jhazmat.2020.124183.
- F.X. Dong, L. Yan, X.H. Zhou, S.T. Huang, J.Y. Liang,
W.X. Zhang, Z.W. Guo, P.R. Guo, W. Qian, L.J. Kong, W. Chu,
Z.H. Diao, Simultaneous adsorption of Cr(VI) and phenol by
biochar-based iron oxide composites in water: Performance,
kinetics and mechanism, J. Hazard. Mater., 416 (2021) 125930,
doi: 10.1016/j.jhazmat.2021.125930.
- P. Mishra, K. Singh, U. Dixit, Adsorption, kinetics and
thermodynamics of phenol removal by ultrasound-assisted
sulfuric acid-treated pea (Pisum sativum) shells, Sustainable
Chem. Pharm., 22 (2021) 100491, doi: 10.1016/j.scp.2021.100491.
- L. Yingjie, X. Hu, X. Liu, Y. Zhang, Q. Zhao, P. Ning, S. Tian,
Adsorption behavior of phenol by reversible surfactantmodified
montmorillonite: mechanism, thermodynamics,
and regeneration, Chem. Eng. J., 334 (2018) 1214–1221.
- M. Keshvardoostchokami, M. Majidi, A. Zamani, B. Liu,
Adsorption of phenol on environmentally friendly Fe3O4/chitosan/zeolitic imidazolate framework-8 nanocomposite:
optimization by experimental design methodology, J. Mol. Liq.,
323 (2021) 115064, doi: 10.1016/j.molliq.2020.115064.
- A. Supong, P.C. Bhomick, R. Karmaker, S.L. Ezung, L. Jamir,
U.B. Sinha, D. Sinha, Experimental and theoretical insight into
the adsorption of phenol and 2,4-dinitrophenol onto Tithonia
diversifolia activated carbon, Appl. Surf. Sci., 529 (2020) 147046,
doi: 10.1016/j.apsusc.2020.147046.
- D.F. Hernández-Barreto, L. Giraldo, J.C. Moreno-Piraján,
Dataset on adsorption of phenol onto activated carbons:
equilibrium, kinetics and mechanism of adsorption, Data Brief,
32 (2020) 106312, doi: 10.1016/j.dib.2020.106312.
- Z. Ghahghaey, M. Hekmati, M. Darvish Ganji, Theoretical
investigation of phenol adsorption on functionalized graphene
using DFT calculations for effective removal of organic
contaminants from wastewater, J. Mol. Liq., 324 (2021) 114777,
doi: 10.1016/j.molliq.2020.114777.
- H.N. Tran, D.T. Nguyen, G.T. Le, F. Tomul, E.C. Lima,
S.H. Woo, A.K. Sarmah, H.Q. Nguyen, P.T. Nguyen, D.D. Nguyen,
T.V. Nguyen, S. Vigneswaran, D.-V.N. Vo, H.-P. Chao,
Adsorption mechanism of hexavalent chromium onto layered
double hydroxides-based adsorbents: a systematic in-depth
review, J. Hazard. Mater., 373 (2019) 258–270.
- R.I. Yousef, B. El-Eswed, A.H. Al-Muhtaseb, Adsorption
characteristics of natural zeolites as solid adsorbents for phenol
removal from aqueous solutions: kinetics, mechanism, and
thermodynamics studies, Chem. Eng. J., 171 (2011) 1143–1149.
- N. Chaouati, A. Soualah, M. Chater, Adsorption of phenol
from aqueous solution onto zeolites y modified by silylation,
C.R. Chim., 16 (2013) 222–228.
- Y. Yu, Z. Hu, Y. Wang, H. Gao, Magnetic SN-functionalized
diatomite for effective removals of phenols, Int. J. Miner.
Process., 162 (2017) 1–5.
- A. Mandal, S.K. Das, Phenol adsorption from wastewater using
clarified sludge from basic oxygen furnace, J. Environ. Chem.
Eng., 7 (2019) 103259, doi: 10.1016/j.jece.2019.103259.
- S. Arhzaf, M.N. Bennani, S. Abouarnadasse, A. Amhoud, Etude
de la basicité de l’hydrotalcite MgAl-CO3 et de son oxyde mixte
par adsorption du phénol et par mesure de l’activité catalytique
dans la condensation du furfural avec l’acétone, J. Mater.
Environ. Sci., 7 (2016) 4226–4236.
- S. Richards, A. Bouazza, Phenol adsorption in organo-modified
basaltic clay and bentonite, Appl. Clay Sci., 37 (2007) 133–142.
- J. Lainé, Y. Foucaud, A. Bonilla-Petriciolet, M. Badawi,
Molecular picture of the adsorption of phenol, toluene, carbon
dioxide and water on kaolinite basal surfaces, Appl. Surf. Sci.,
585 (2022) 152699, doi: 10.1016/j.apsusc.2022.152699.
- R. Dong, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Removal of
phenol from aqueous solution using acid-modified Pseudomonas
putida-sepiolite/ZIF-8 bio-nanocomposites, Chemosphere,
239 (2020) 124708, doi: 10.1016/j.chemosphere.2019.124708.
- H. Asnaoui, Y. Dehmani, M. Khalis, E.K. Hachem, Adsorption
of phenol from aqueous solutions by Na–bentonite: kinetic,
equilibrium and thermodynamic studies, Int. J. Environ.
Anal. Chem., 102 (2022) 3043–3057.
- X. Liu, Y. Tu, S. Liu, K. Liu, L. Zhang, G. Li, Z. Xu, Adsorption
of ammonia nitrogen and phenol onto the lignite surface:
an experimental and molecular dynamics simulation
study, J. Hazard. Mater., 416 (2021) 125966, doi: 10.1016/j.jhazmat.2021.125966.
- A. El Gaidoumi, A. Chaouni Benabdallah, A. Lahrichi,
A. Kherbeche, Adsorption du phénol en milieu aqueux par
une pyrophyllite marocaine brute et traitée, J. Mater. Environ.
Sci., 6 (2015) 2247–2259.