References
- D.B. Aulenbach, Water—Our Second Most Important Natural
Resource, BC Indus. & Com. L. Rev., 9 (1967) 535.
- Y. Yang, X. Zhang, J. Jiang, J. Han, W. Li, X. Li, K.M.Y. Leung,
S.A. Snyder, P.J.J. Alvarez, Which micropollutants in water
environments deserve more attention globally?, Environ. Sci.
Technol., 56 (2021) 13–29.
- T.K. Kasonga, M.A.A. Coetzee, I. Kamika, V.M. Ngole-
Jeme, M.N.B. Momba, Endocrine-disruptive chemicals as
contaminants of emerging concern in wastewater and surface
water: a review, J. Environ. Manage., 277 (2021) 111485,
doi: 10.1016/j.jenvman.2020.111485.
- A. Daneshvar, J. Svanfelt, L. Kronberg, G.A. Weyhenmeyer,
Winter accumulation of acidic pharmaceuticals in a Swedish
river, Environ. Sci. Pollut. Res. Int., 17 (2010) 908–916.
- A. Puckowski, K. Mioduszewska, P. Łukaszewicz, M. Borecka,
M. Caban, J. Maszkowska, P. Stepnowski, Bioaccumulation
and analytics of pharmaceutical residues in the environment: a
review, J. Pharm. Biomed. Anal., 127 (2016) 232–255.
- L. Lonappan, S.K. Brar, R.K. Das, M. Verma, R.Y. Surampalli,
Diclofenac and its transformation products: environmental
occurrence and toxicity - a review, Environ. Int., 96 (2016)
127–138.
- P. Higgins, S.H. Siddiqui, R. Kumar, Design of novel graphene
oxide/halloysite nanotube@polyaniline nanohybrid for the
removal of diclofenac sodium from aqueous solution, Environ.
Nanotechnol. Monit. Manage., 17 (2022) 100628, doi: 10.1016/j.enmm.2021.100628.
- M. Bizi, Sulfamethoxazole removal from drinking water by
activated carbon: kinetics and diffusion process, Molecules,
25 (2020) 4656, doi: 10.3390/molecules25204656.
- A. Guellati, R. Maachi, T. Chaabane, A. Darchen, M. Danish,
Aluminum dispersed bamboo activated carbon production for
effective removal of ciprofloxacin hydrochloride antibiotics:
optimization and mechanism study, J. Environ. Manage.,
301 (2022) 113765, doi: 10.1016/j.jenvman.2021.113765.
- I. Ihsanullah, M.T. Khan, M. Zubair, M. Bilal, M. Sajid,
Removal of pharmaceuticals from water using sewage sludgederived
biochar: a review, Chemosphere, 289 (2022) 133196,
doi: 10.1016/j.chemosphere.2021.133196.
- L. Rizzo, S. Malato, D. Antakyali, V.G. Beretsou, M.B. Đolić,
W. Gernjak, G. Mascolo, D. Fatta-Kassinos, Consolidated
vs new advanced treatment methods for the removal of
contaminants of emerging concern from urban wastewater,
Sci. Total Environ., 655 (2019) 986–1008.
- T. Gutiérrez-Macías, P. Mijaylova Nacheva, A. Esquivel-Sotelo,
L. García-Sánchez, E.B. Estrada-Arriaga, Batch kinetic studies
of pharmaceutical compounds removal using activated sludge
obtained from a membrane bioreactor, Water Air Soil Pollut.,
233 (2022) 36, doi: 10.1007/s11270-022-05508-w.
- R.C. Asha, M.P. Yadav, M. Kumar, Sulfamethoxazole removal
in membrane photocatalytic reactor system–experimentation
and modelling, Environ. Technol., 40 (2018) 1697–1704.
- C. Martínez-Sánchez, I. Robles, L.A. Godínez, Review of
recent developments in electrochemical advanced oxidation
processes: application to remove dyes, pharmaceuticals, and
pesticides, Int. J. Environ. Sci. Technol., (2022), doi: 10.1007/s13762-021-03762-9 (in press).
- Y.Q. Gao, J.Q. Zhou, Y.Y. Rao, H. Ning, J. Zhang, J. Shi,
N.Y. Gao, Comparative study of degradation of ketoprofen
and paracetamol by ultrasonic irradiation: mechanism, toxicity
and DBP formation, Ultrason. Sonochem., 82 (2022) 105906,
doi: 10.1016/j.ultsonch.2021.105906.
- R. Koklu, M. Imamoglu, Removal of ciprofloxacin from aqueous
solution by activated carbon prepared from orange peel using
zinc chloride, Membr. Water Treat., 13 (2022) 129–137.
- M. Imamoglu, Novel determination of copper(II) in natural
waters by solid-phase extraction (SPE) flow-injection (FI) flame
atomic absorption spectrometry (FAAS), Anal. Lett., (2022),
doi: 10.1080/00032719.2022.2092632 (in press).
- Ç. Özer, M. İmamoğlu, Removal of ciprofloxacin from aqueous
solutions by pumpkin peel biochar prepared using phosphoric
acid, Biomass Convers. Biorefin., (2022), doi: 10.1007/s13399-
022-02832-3 (in press).
- D. Bal, Ç. Özer, M. İmamoğlu, Green and ecofriendly biochar
preparation from pumpkin peel and its usage as an adsorbent
for methylene blue removal from aqueous solutions, Water Air
Soil Pollut., 232 (2021) 1–16.
- M. Teker, M. Imamoğlu, Ö. Saltabaş, Adsorption of copper
and cadmium lons by activated carbon from rice hulls, Turk. J.
Chem., 23 (1999) 185–192.
- N. Ozturk, M. Yazar, A. Gundogdu, C. Duran, H.B. Senturk,
M. Soylak, Application of cherry laurel seeds activated carbon
as a new adsorbent for Cr(VI) removal, Membr. Water Treat.,
12 (2021) 11–21.
- H. Wei, H. Wang, A. Li, H. Li, D. Cui, M. Dong, J. Lin, J. Fan,
J. Zhang, H. Hou, Y. Shi, D. Zhou, Z. Guo, Advanced porous
hierarchical activated carbon derived from agricultural wastes
toward high performance supercapacitors, J. Alloys Compd.,
820 (2020) 153111, doi: 10.1016/j.jallcom.2019.153111.
- M. Muniyandi, P. Govindaraj, Potential removal of methylene
blue dye from synthetic textile effluent using activated carbon
derived from palmyra (Palm) shell, Mater. Today:. Proc.,
47 (2021) 299–311.
- B.R. Abisha, C.I. Anish, R. Beautlin Nisha, N. Daniel Sam, M. Jaya
Rajan, Adsorption and equilibrium studies of methyl orange
on tamarind shell activated carbon and their characterization,
Phosphorus Sulfur, 197 (2022) 225–230.
- L. Wu, X. Zhang, Y. Si, Polydopamine functionalized superhydrophilic
coconut shells biomass carbon for selective cationic
dye methylene blue adsorption, Mater. Chem. Phys., 279 (2022)
125767, doi: 10.1016/j.matchemphys.2022.125767.
- E. Dovi, A.A. Aryee, A.N. Kani, F.M. Mpatani, J. Li, L. Qu,
R. Han, High-capacity amino-functionalized walnut shell for
efficient removal of toxic hexavalent chromium ions in batch
and column mode, J. Environ. Chem. Eng., 10 (2022) 107292,
doi: 10.1016/j.jece.2022.107292.
- M. Imamoglu, O. Tekir, Removal of copper(II) and lead(II) ions
from aqueous solutions by adsorption on activated carbon
from a new precursor hazelnut husks, Desalination, 228 (2008)
108–113.
- C. Ozer, M. Imamoglu, Y. Turhan, F. Boysan, Removal of
methylene blue from aqueous solutions using phosphoric
acid activated carbon produced from hazelnut husks,
Toxicol. Environ. Chem., 94 (2012) 1283–1293.
- C. Duran, D. Ozdes, A. Gundogdu, M. Imamoglu, H.B. Senturk,
Tea-industry waste activated carbon, as a novel adsorbent,
for separation, preconcentration and speciation of chromium,
Anal. Chim. Acta, 688 (2011) 75–83.
- F. Aci, M. Nebioglu, M. Arslan, M. Imamoglu, M. Zengin,
M. Kucukislamoglu, Preparation of activated carbon from
sugar beet molasses and adsorption of methylene blue,
Fresenius Environ. Bull., 17 (2008) 997–1001.
- A. Özer, H.B. Pirincci, The adsorption of Cd(II) ions on sulphuric
acid-treated wheat bran, J. Hazard. Mater., 137 (2006) 849–855.
- D. Hao, Y. Chen, Y. Zhang, N. You, Nanocomposites of zerovalent
iron@biochar derived from agricultural wastes for
adsorptive removal of tetracyclines, Chemosphere, 284 (2021)
131342, doi: 10.1016/j.chemosphere.2021.131342.
- M. Zhu, F. Li, W. Chen, X. Yin, Z. Yi, S. Zhang, Adsorption
of U(VI) from aqueous solution by using KMnO4-modified
hazelnut shell activated carbon: characterisation and artificial
neural network modelling, Environ. Sci. Pollut. Res., 28 (2021)
47354–47366.
- B. Zhao, X. Xu, F. Zeng, H. Li, X. Chen, The hierarchical porous
structure bio-char assessments produced by co-pyrolysis of
municipal sewage sludge and hazelnut shell and Cu(II) adsorption
kinetics, Environ. Sci. Pollut. Res., 25 (2018) 19423–19435.
- D.D. Milenković, P.V. Dašić, V.B. Veljković, Ultrasound-assisted
adsorption of copper(II) ions on hazelnut shell activated
carbon, Ultrason. Sonochem., 16 (2009) 557–563.
- S. Aghagani, H. Baseri, Production of magnetic biochar from
the hazelnut shell and magnetite particles for adsorption of
Penicillin-G from the contaminated water, Urban Water J.,
19 (2022) 422–432.
- M. Zabihi, M. Omidvar, A. Motavalizadehkakhky, R. Zhiani,
Competitive adsorption of arsenic and mercury on nanomagnetic
activated carbons derived from hazelnut shell,
Korean J. Chem. Eng., 39 (2022) 367–376.
- Y. Wang, B. Jiang, L. Wang, Z. Feng, H. Fan, T. Sun, Hierarchically
structured two-dimensional magnetic microporous biochar
derived from hazelnut shell toward effective removal of
p-arsanilic acid, Appl. Surf. Sci., 540 (2021) 148372, doi: 10.1016/j.apsusc.2020.148372.
- D. Balarak, F.K. Mostafapour, H. Azarpira, Adsorption kinetics
and equilibrium of ciprofloxacin from aqueous solutions using
Corylus avellana (hazelnut) activated carbon, Br. J. Pharm. Res.,
13 (2016) 1–14.
- M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh,
H.R. Kermani, Removal of lead, cadmium, zinc, and copper
from industrial wastewater by carbon developed from walnut,
hazelnut, almond, pistachio shell, and apricot stone, J. Hazard.
Mater., 150 (2008) 322–327.
- W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang, Preparation of high
adsorption capacity bio-chars from waste biomass, Bioresour.
Technol., 102 (2011) 8247–8252.
- S. Sivrikaya, S. Albayrak, M. Imamoglu, A. Gundogdu,
C. Duran, H. Yildiz, Dehydrated hazelnut husk carbon: a
novel sorbent for removal of Ni(II) ions from aqueous solution,
Desal. Water Treat., 50 (2012) 2–13.
- ASTM, Standard Test Method for Determination of Iodine
Number of Activated Carbon, ASTM Annual Book, 1999.
- S. Usanmaz, C. Ozer, M. Imamoglu, Removal of Cu(II), Ni(II)
and Co(II) ions from aqueous solutions by hazelnut husks
carbon activated with phosphoric acid, Desal. Water Treat.,
227 (2021) 300–308.
- Schröder, K. Thomauske, C. Weber, A. Hornung, V. Tumiatti,
Experiments on the generation of activated carbon from
biomass, J. Anal. Appl. Pyrolysis, 79 (2007) 106–111.
- J. Rodríguez-Mirasol, T. Cordero, J.J. Rodríguez, Preparation
and characterization of activated carbons from eucalyptus
kraft lignin, Carbon, 31 (1993) 87–95.
- M. Kobya, Adsorption kinetic and equilibrium studies of Cr(VI)
by hazelnut shell activated carbon, Adsorpt. Sci. Technol.,
22 (2004) 51–64.
- S.M. Yakout, G.S. El-Deen, Characterization of activated
carbon prepared by phosphoric acid activation of olive stones,
Arabian J. Chem., 9 (2016) S1155–S1162.
- C.E. Brewer, Biochar Characterization and Engineering,
Paper 12284, Iowa State University, 2012.
- D. Kołodyńska, R. Wnętrzak, J.J. Leahy, M.H.B. Hayes,
W. Kwapiński, Z. Hubicki Kinetic and adsorptive
characterization of biochar in metal ions removal, Chem. Eng.
J., 197 (2012) 295–305.
- M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of
heavy metal ions from aqueous solutions by activated carbon
prepared from apricot stone, Bioresour. Technol., 96 (2005)
1518–1521.
- C. Ozer, M. Imamoglu, Adsorptive transfer of methylene blue
from aqueous solutions to hazelnut husk carbon activated
with potassium carbonate, Desal. Water Treat., 94 (2017)
236–243.
- M. Soleimani, T. Kaghazchi, Agricultural waste conversion to
activated carbon by chemical activation with phosphoric acid,
Chem. Eng. Technol., 30 (2007) 649–654.
- R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez, Removal
of pharmaceutical compounds by activated carbon prepared
from agricultural by-product, Chem. Eng. J., 211 (2012) 310–317.
- D.S. Kumar, P.S. Kumar, N.M. Rajendran, G. Anbuganapathi,
Compost maturity assessment using physicochemical, solidstate
spectroscopy, and plant bioassay analysis, J. Agric. Food
Chem., 61 (2013) 11326–11331.
- B. Esteves, A. Velez Marques, I. Domingos, H. Pereira, Chemical
changes of heat treated pine and eucalypt wood monitored by
FTIR, Maderas-Cienc. Tecnol., 15 (2013) 245–258.
- M.E. Saleh, A.A. El-Refaey, A.H. Mahmoud, Effectiveness of
sunflower seed husk biochar for removing copper ions from
wastewater: a comparative study, Soil Water Res., 11 (2016) 53–63.
- P. Lv, G. Almeida, P. Perre, TGA-FTIR analysis of torrefaction
of lignocellulosic components (cellulose, xylan, lignin) in
isothermal conditions over a wide range of time durations,
Bioresources, 10 (2015) 4239–4251.
- S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Biochar
prepared from co-pyrolysis of municipal sewage sludge and
tea waste for the adsorption of methylene blue from aqueous
solutions: kinetics isotherm thermodynamic and mechanism,
J. Mol. Liq., 220 (2016) 432–441.
- M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier,
F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of
gases with special reference to the evaluation of surface area
and pore-size distribution (IUPAC Technical Report), Pure
Appl. Chem., 87 (2015) 1051–1069.
- R.F.T. Tiegam, D.R.T. Tchuifon, R. Santagata, P.A.K. Nanssou,
S.G. Anagho, I. Ionel, S. Ulgiati, Production of activated carbon
from cocoa pods: investigating benefits and environmental
impacts through analytical chemistry techniques and life cycle
assessment, J. Cleaner Prod., 288 (2021) 125464, doi: 10.1016/j.
jclepro.2020.125464.
- M.M. Maroto-Valer, I. Dranca, T. Upascu, R. Nastas, Effect of
adsorbate polarity on thermodesorption profiles from oxidized
and metal-impregnated activated carbons, Carbon, 42 (2004)
2655–2659.
- B.N. Bhadra, P.W. Seo, S.H. Jhung, Adsorption of diclofenac
sodium from water using oxidized activated carbon, Chem.
Eng. J., 301 (2016) 27–34.
- N. Pamphile, L. Xuejiao, Y. Guangwei, W. Yin, Synthesis of a
novel core-shell-structure activated carbon material and its
application in sulfamethoxazole adsorption, J. Hazard. Mater.,
368 (2019) 602–612.
- J. Kong, Y. Zheng, L. Xiao, B. Dai, Y. Meng, Z. Ma, X. Huang,
Synthesis and comparison studies of activated carbons based
folium cycas for ciprofloxacin adsorption, Colloids Surf., A,
606 (2020) 125519, doi: 10.1016/j.colsurfa.2020.125519.
- Ç. Özer, M. İmamoğlu, Isolation of nickel(II) and lead(II) from
aqueous solution by sulfuric acid prepared pumpkin peel
biochar, Anal. Lett., (2022), doi: 10.1080/00032719.2022.2078981
(in press).
- A. Gündoğdu, H.B. Şentürk, C. Duran, M. İmamoğlu,
M. Soylak, A new low-cost activated carbon produced from
tea-industry waste for removal of Cu(II) ions from aqueous
solution: equilibrium, kinetic and thermodynamic evaluation,
Karadeniz Chem. Sci. Technol., 2 (2018) 1–10.
- X. Liu, S. Lu, Y. Liu, W. Meng, B. Zheng, Adsorption of
sulfamethoxazole (SMZ) and ciprofloxacin (CIP) by humic
acid (HA): characteristics and mechanism, RSC Adv., 7 (2017)
50449–50458.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances, Kongl. Vetensk. Acad. Handl., 24 (1898)
1–39.
- Y.S. Ho, G. Mckay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon
from solution, J. Sanit. Eng. Div., 89 (1963) 31–59.
- M. Antunes, V.I. Esteves, R. Guégan, J.S. Crespo,
A.N. Fernandes, M. Giovanela, Removal of diclofenac sodium
from aqueous solution by Isabel grape bagasse, Chem. Eng. J.,
192 (2012) 114–121.
- A. Gundogdu, C. Duran, H.B. Senturk, M. Soylak, D. Ozdes,
H. Serencam, M. Imamoglu, Adsorption of phenol from
aqueous solution on a low-cost activated carbon produced from
tea industry waste: equilibrium, kinetic, and thermodynamic
study, J. Chem. Eng. Data, 57 (2012) 2733–2743.
- G. Karaçetin, S. Sivrikaya, M. Imamoglu, Adsorption of
methylene blue from aqueous solutions by activated carbon
prepared from hazelnut husk using zinc chloride, J. Anal. Appl.
Pyrolysis, 110 (2014) 270–276.
- M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir
isotherms, Acta Physiochim. USSR, 12 (1940) 217–222.
- M.M. Dubinin, L.V. Radushkevich, Evaluation of microporous
materials with a new isotherm, In Dokl. Akad. Nauk., SSSR,
55 (1947) 331–334.
- Z. Shirani, C. Santhosh, J. Iqbal, A. Bhatnagar, Waste Moringa
oleifera seed pods as green sorbent for efficient removal of toxic
aquatic pollutants, J. Environ. Manage., 227 (2018) 95–106.
- T. Li, X. Han, C. Liang, M.J.I. Shohag, X. Yang, Sorption of
sulphamethoxazole by the biochars derived from rice straw
and alligator flag, Environ. Technol., 36 (2015) 245–253.
- M.D.G. De Luna, W. Budianta, K.K.P. Rivera, R.O. Arazo,
Removal of sodium diclofenac from aqueous solution by
adsorbents derived from cocoa pod husks, J. Environ. Chem.
Eng., 5 (2017) 1465–1474.
- S.A. Torrellas, R.G. Lovera, N. Escalona, C. Sepulveda,
J.L. Sotelo, J. Garcia, Chemical-activated carbons from peach
stones for the adsorption of emerging contaminants in aqueous
solutions, Chem. Eng. J., 279 (2015) 788–798.
- L. Wang, G. Chen, C. Ling, J. Zhang, K. Szerlag, Adsorption
of ciprofloxacin on to bamboo charcoal: effects of pH, salinity,
cations, and phosphate, Environ. Prog. Sustainable Energy,
36 (2017) 1108–1115.
- E.S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin
adsorption from aqueous solution onto chemically prepared
carbon from date palm leaflets, J. Environ. Sci., 24 (2012)
1579–1586.
- J. Li, G. Yu, L. Pan, C. Li, F. You, S. Xie, Y. Wang, J. Ma, X. Shang,
Study of ciprofloxacin removal by biochar obtained from used
tea leaves, J. Environ. Sci., 73 (2018) 20–30.
- M.E. Penafiel, J.M. Matesanz, E. Vanegas, D. Bermejo,
R. Mosteoö, M.P. Ormad, Comparative adsorption of
ciprofloxacin on sugarcane bagasse from Ecuador and on
commercial powdered activated carbon, Sci. Total Environ.,
750 (2021) 141498, doi: 10.1016/j.scitotenv.2020.141498.
- C. Afonso-Olivares, C. Fernández-Rodríguez, R.J. Ojeda-
González, Z. Sosa-Ferrera, J.J. Santana-Rodríguez,
J.D. Rodríguez, Estimation of kinetic parameters and UV
doses necessary to remove twenty-three pharmaceuticals from
pre-treated urban wastewater by UV/H2O2, J. Photochem.
Photobiol., A, 329 (2016) 130–138.
- S. Beier, S. Köster, K. Veltmann, H. Schröder, J. Pinnekamp,
Treatment of hospital wastewater effluent by nanofiltration
and reverse osmosis, Water Sci. Technol., 61 (2010) 1691–1698.
- A. Aguinaco, F.J. Beltrán, J.F. García-Araya, A. Oropesa,
Photocatalytic ozonation to remove the pharmaceutical
diclofenac from water: influence of variables, Chem. Eng. J.,
189 (2012) 275–282.
- P. Bhattacharya, D. Mukherjee, S. Dey, S. Ghosh, S. Banerjee,
Development and performance evaluation of a novel CuO/TiO2
ceramic ultrafiltration membrane for ciprofloxacin removal,
Mater. Chem. Phys., 229 (2019) 106–116.
- I. Firdaus, A. Yaqub, H. Ajab, I. Khan, B.A.Z. Amin, A. Baig,
M.H. Isa, Electrochemical oxidation of amoxicillin, ciprofloxacin
and erythromycin in water: effect of experimental factors
on COD removal, Pak. J. Pharm. Sci., 34 (2021) 119–128.
- N. Shahmahdi, R. Dehghanzadeh, H. Aslani, S.B. Shokouhi,
Performance evaluation of waste iron shavings (Fe0) for
catalytic ozonation in removal of sulfamethoxazole from
municipal wastewater treatment plant effluent in a batch mode
pilot plant, Chem. Eng. J., 383 (2020) 123093, doi: 10.1016/j.
cej.2019.123093.
- M.C. Tonucci, L.V.A. Gurgel, S.F. de Aquino, Activated carbons
from agricultural by-products (pine tree and coconut shell),
coal, and carbon nanotubes as adsorbents for removal of
sulfamethoxazole from spiked aqueous solutions: kinetic and
thermodynamic studies, Ind. Crops Prod., 74 (2015) 111–121.