References

  1. Z. Bencheqroun, I. El Mrabet, M. Nawdali, M. Benali, H. Zaitan, Adsorption removal of cationic dyes from aqueous solutions by raw and chemically activated cedar sawdust, Desal. Water Treat., 240 (2021) 177–190.
  2. Y. Abrouki, J. Mabrouki, A. Anouzla, S.K. Rifi, Y. Zahiri, S. Nehhal, A. El Yadini, R. Slimani, S. El Hajjaji, H. Loukili, S. Souabi, Optimization and modeling of a fixed-bed biosorption of textile dye using agricultural biomass from the Moroccan Sahara, Desal. Water Treat., 240 (2021) 144–151.
  3. R. Subramaniam, S.K. Ponnusamy, Novel adsorbent from agricultural waste (cashew nut shell) for methylene blue dye removal: optimization by response surface methodology, Water Resour. Ind., 11 (2015) 64–70.
  4. S. Papirio, L. Frunzo, M. Rosaria Mattei, A. Ferraro, M. Race, B. D’Acunto, F. Pirozzi, G. Esposito, Sustainable Heavy Metal Remediation, E.R. Rene, E. Sahinkaya, A. Lewis, P.N.L. Lens, Eds., Environmental Chemistry for a Sustainable World, Springer, Berlin, 2017, pp. 25–64.
  5. A. Patel, S. Soni, J. Mittal, A. Mittal, C. Arora, Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome, Desal. Water Treat., 220 (2021) 342–352.
  6. M. Kucukosmanoglu, O. Gezici, A. Ayar, The adsorption behaviors of methylene blue and methyl orange in a diaminoethane sporopolleninmediated column system, Sep. Purif. Technol., 52 (2006) 280–287.
  7. T.A. Saleh, V.K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, J. Colloid Interface Sci., 371 (2012) 101–106.
  8. K. Bhattacharya, A. Sharma, Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder, Dyes Pigm., 65 (2005) 51–59.
  9. K.T. Chung, S.E. Stevens Jr., C.E. Cerniglia, The reduction of azo dyes by the intestinal microflora, Crit. Rev. Microbiol., 18 (1992) 175–190.
  10. K.T. Chung, The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes, Mutat. Res., 114 (1983) 269–281.
  11. P.S. Kumar, M.J.S. Raja, M. Kumaresan, D.K. Loganathan, P.A. Chandrasekaran, New electrode reactor with in-built recirculation mode for the enhancement of methylene blue dye removal from the aqueous solution: comparison of adsorption, electrolysis, and combined effect, Korean J. Chem. Eng., 31 (2014) 276–283.
  12. D. Beqqour, G. Derouich, W. Taanaoui, A. Essate, M. Ouammou, S. Allami Younssi, J. Bennazha, J.A. Cody,
    M. El Rhazi, Development of composite ultrafiltration membrane made of PmPD/PVA layer deposited on ceramic pozzolan/micronized phosphate support and its application for Congo red dye removal, Desal. Water Treat., 240 (2021) 152–164.
  13. S. Dutta, B. Gupta, S.K. Srivastava, A.K. Gupta, Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review, Mater. Adv., 2 (2021) 4497–4531.
  14. D.H.K. Reddy, K. Seshaiah, A.V.R. Reddy, S.M. Lee, Optimization of Cd(II), Cu(II), and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder, Carbohydr. Polym., 88 (2012) 1077–1086.
  15. C. Arora, P. Kumar, S. Soni, J. Mittal, A. Mittal, B. Singh, Efficient removal of malachite green dye from aqueous solution using Curcuma caesia based activated carbon, Desal. Water Treat., 195 (2020) 341–352.
  16. S. Soni, P.K. Bajpai, D. Bharti, J. Mittal, C. Arora, Removal of crystal violet from aqueous solution using iron based metal organic framework, Desal. Water Treat., 205 (2020) 386–399.
  17. V.C. Patil, N.M. Rajeshwari, S. Samhita, S. Sthana, Vol. I, Chaukhamba Publications, New Delhi, 2018, pp. 400–401.
  18. C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar, P.K. Bajpai, Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste, J. Mol. Liq., 284 (2019) 343–352.
  19. M.S. Sajab, C.H. Chia, S. Zakaria, P.S. Khiew, Cationic and anionic modifications of oil palm empty fruit bunch fibers for the removal of dyes from aqueous solutions, Bioresour. Technol., 128 (2013) 571–577.
  20. P.S. Kumar, R. Sivaranjanee, U. Vinothini, M. Raghavi, K. Rajasekar, K. Ramakrishnan, Adsorption of dye onto raw and surface modified tamarind seeds: isotherms, process design, kinetics, and mechanism, Desal. Water Treat., 52 (2014) 2620–2633.
  21. X.-J. Liu, H.-Y. Zeng, S. Xu, C.-R. Chen, Z.-Q. Zhang, J.-Z. Du, Metal oxides as dual-functional adsorbents/catalysts for Cu2+/Cr(VI) adsorption and methyl orange oxidation catalysis, J. Taiwan Inst. Chem. Eng., 60 (2016) 414–422.
  22. M. Makeswari, P. Saraswati, Photo catalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite, SN Appl. Sci., 2 (2020) 336, doi: 10.1007/s42452-020-1980-4.
  23. M. Adeel, M.S. Iltaf Khan, M. Muneer, N, Akra, Synthesis and characterization of Co−ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange, ACS Omega, 6 (2021) 1426−1435.
  24. M. Saeed, S. Adeel, H. Abdur-Raoof, M. Usman, A. Mansha, A. Ahmad, M. Amjed, ZnO catalyzed degradation of methyl orange in aqueous medium, Chiang Mai J. Sci., 44 (2017) 1646–1653.
  25. M. Tripathi, J.N. Sahu, P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review, Renewable Sustainable Energy Rev., 55 (2016) 467–481.
  26. G. Lu, X. Lu, P. Liu, Reactivation of spent FCC catalyst by mixed acid leaching for efficient catalytic cracking, J. Ind. Eng. Chem., 92 (2020) 236–242.
  27. A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Adsorptive removal of hazardous anionic dye “Congo red” from waste water using waste materials and recovery by desorption, J. Colloid Interface Sci., 340 (2009) 16–26.
  28. B.S. Kaith, J. Sharma, S. Sethi, T. Kaur, U. Shankar, V. Jassal, Fabrication of green device for efficient capture of toxic methylene blue from industrial effluent based on K2Zn3[Fe(CN)6]2·9H2O nanoparticles reinforced gum xanthanpsyllium hydrogel nanocomposite, J. Chin. Adv. Mater. Soc., 4 (2016) 249–268.
  29. U.A. Edet, A.O. Ifelebuegu, Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste, Processes, 8 (2020) 665–680.
  30. K.Y. Foo, B. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  31. A. Dada, A. Olalekan, A. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, J. Appl. Chem., 3 (2012) 38–45.
  32. X. Yuan, W. Xia, J. An, J. Yin, X. Zhou, W. Yang, Kinetic and thermodynamic studies on the phosphate adsorption removal by dolomite mineral, J. Chem., 2015 (2015) 853105, doi: 10.1155/2015/853105.
  33. B. Armynah, D. Tahir, M. Tandilayuk, Z. Djafar, W.H. Piarah, Potentials of biochars derived from bamboo leaf biomass as energy sources: effect of temperature and time of heating, Int. J. Biomater., 2019 (2019) 3526145, doi: 10.1155/2019/3526145.
  34. V.K. Avornyo, A. Manu, D.A. Laird, M.L. Thompson, Temperature effects on properties of rice husk biochar and calcinated burkina phosphate rock, Agriculture, 11 (2021) 432, doi: 10.3390/agriculture11050432.
  35. Z. Ying, J.M.Z. He Ying, W. Daria, H. Fengxiang, R. Gaurab, T. Jinke, D. Qilin, Synthesis of Fe2O3/biochar nanocomposites by microwave method for magnetic energy-storage concentration cells, Mater. Lett.: X, 3 (2019) 100020, doi: 10.1016/j. mlblux.2019.100020.
  36. Z. Chen, F. Gao, K. Ren, Q. Wu, Y. Luo, H. Zhou, M. Zhang, Q. Xu, Mechanism of by-products formation in the isobutane/butene alkylation on HY zeolites, RSC Adv., 8 (2018) 3392–3398.
  37. Y. Sun, B. Gao, Y. Yao, J. Fang, M. Zhang, Y. Zhou, L. Yang, Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties, Chem. Eng. J., 240 (2014) 574–578.
  38. M. de C.E. Pinto, D.D. da Silva, A.L.A. Gomes, V. dos S.A. Leite, A.R.F. Moraes, R.F. de Novais, J. Tronto, F.G. Pinto, Film based on magnesium impregnated biochar/cellulose acetate for phosphorus adsorption from aqueous solution, RSC Adv., 9 (2019) 5620–5627.
  39. T.M. Salamaa, I.O. Ali, A.I. Hanafya, W.M. Al-Meligy, A novel synthesis of NaA zeolite encapsulated iron(III) Schiff base complex: photocatalytic oxidation of direct blue-1 dye with hydrogen peroxide, Mater. Chem. Phys., 113 (2009) 159–165.
  40. Z. Anfar, M. Zbair, H.A. Ahsiane, J. de Amane, N. El Alem, Microwave-assisted green synthesis of Fe2O3/biochar for ultrasonic removal of nonsteroidal anti-inflammatory pharmaceuticals, RSC Adv., 10 (2020) 11371–11380.
  41. S. Xia, K. Li, H. Xiao, N. Cai, Z. Dong, C. Xu, Y. Chen, H. Yang, X. Tu, Pyrolysis of Chinese chestnut shells: effects of temperature and Fe presence on product composition, Bioresour. Technol., 287 (2019) 121444, doi: 10.1016/j.biortech.2019.121444.
  42. D. Shan, S. Deng, T. Zhao, B. Wang, Y. Wang, J. Huang, G. Yu, J. Winglee, M.R. Wiesner, Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling, J. Hazard. Mater., 305 (2016) 156–163.
  43. D. Ozturk, T. Şahan, E. Dişli, N. Aktaş, Optimization with response surface methodology (RSM) of adsorption conditions of Cd(II) ions from aqueous solutions by pumice, Hacettepe J. Biol. Chem., 42 (2014) 183–192.
  44. H.J. Rao, P. King, Y.P. Kumar, Application of response surface methodology for optimization of cadmium adsorption in an aqueous solution by activated carbon prepared from Bauhinia purpurea leaves, Rasayan J. Chem., 11 (2018) 1577–1586.
  45. T.T. Shumba, M. Tapera, J. Mumbi, Biochar versus iron oxidebiochar performance as adsorbents for lead and methyl orange from an aqueous solution, J. Mater. Sci. Res. Rev., 4 (2019) 1–12.
  46. N. Chaukura, E.C. Murimba, W. Gwenzi, Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge, Appl. Water Sci., 7 (2017) 2175–2186.
  47. F.Z. Addar, S. El-Ghzizel, M. Tahaikt, M. Belfaquir, M. Taky, A. Elmidaoui, Fluoride removal by nanofiltration experimentation, modelling and prediction based on the surface response method, Desal. Water Treat., 240 (2021) 75–88.
  48. A. Karami, K. Karimyan, R. Davoodi, M. Karimaei, K. Sharafie, S. Rahimi, T. Khosravi, M. Miri, H. Sharafi, A. Azari, Application of response surface methodology for statistical analysis, modeling, and optimization of malachite green removal from aqueous solutions by manganese-modified pumice adsorbent, Desal. Water Treat., 89 (2017) 150–161.
  49. S. Soni, P.K. Bajpai, D. Bharti, J. Mittal, C. Arora, Removal of crystal violet from aqueous solution using iron based metal organic framework, Desal. Water Treat., 205 (2020) 386–399.
  50. O.I. Kingsley, J.O. Ighalo, E.C. Emenike, L.A. Ogunfowora, C.A. Igwegbe, Adsorption of methyl orange: a review on adsorbent performance, Curr. Res. Green Sustainable Chem., 4 (2021) 100179, doi: 10.1016/j.crgsc.2021.100179.
  51. X. Shenghui, P. Huang, J.J. Kruzic, X. Zeng, H. Qian, A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders, Sci. Rep., 6 (2016) 21947, doi: 10.1038/srep21947.
  52. M.-H. Baek, C.O. Ijagbemi, D.-S. Kim, Removal of malachite green from aqueous solution using degreased coffee bean, J. Hazard. Mater., 176 (2010) 820–828.
  53. B.H. Hameed, M.I. El-Khaiary, Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies, J. Hazard. Mater., 154 (2008) 237–244.
  54. R. Malik, D.S. Ramteke, S.R. Wate, Adsorption of malachite green on groundnut shell waste based powdered activated carbon, Waste Manage., 27 (2007) 1129–1138.
  55. J. Chen, X. Shi, Y. Zhan, X. Qiu, Y. Du, H. Deng, Construction of horizontal sstratum landform-like composite foams and their methyl orange adsorption capacity, Appl. Surf. Sci., 397 (2017) 133–143.
  56. Z. Zhou, R. Liu, Fe3O4@polydopamine and derived Fe3O4@carbon core–shell nanoparticles: comparison in adsorption for cationic and anionic dyes, Colloids Surf., A, 522 (2017) 260–265.