References

  1. O. Baytar, O. Şahin, C. Saka, S. Ağrak, Characterization of microwave and conventional heating on the pyrolysis of pistachio shells for the adsorption of methylene blue and iodine, Anal. Lett., 51 (2018) 2205–2220.
  2. D. Balarak, Y. Mahdavi, E. Bazrafshan, A.H. Mahvi, Kinetic, isotherms and thermodynamic modeling for adsorption of acid blue 92 from aqueous solution by modified Azolla filiculoides, Fresenius Environ. Bull., 25 (2016) 1321–1330.
  3. A.N. Nnaemeka. Environmental pollution and associated health hazards to host communities (case study: Niger delta region of Nigeria), Cent. Asian J. Environ. Sci. Technol. Innovation, 1 (2020) 30–42.
  4. A.B. Al-Hawash, M.A. Dragh, S. Li, A. Alhujaily, Principles of microbial degradation of petroleum hydrocarbons in the environment, Egypt. J. Aquat. Res., 44 (2018) 71–76.
  5. A. Adachi, H. Hamamoto, T. Okano, Use of lees materials as an adsorbent for removal of organochlorine compounds or benzene from wastewater, Chemosphere, 58 (2005) 817–822.
  6. P.M. Stähelin, A. Valério, Benzene and toluene removal from synthetic automotive gasoline by mono and bicomponent adsorption process, Fuel, 231 (2018) 45–52.
  7. M. Tang, X. Huang, Y. Peng, S. Lu, Hierarchical porous carbon as a highly efficient adsorbent for toluene and benzene, Fuel, 270 (2020) 117478, doi: 10.1016/j.fuel.2020.117478.
  8. D. Loomis, K.Z. Guyton, Y. Grosse, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, N. Vilahur, H. Mattock, K. Straif, Carcinogenicity of benzene, Lancet Oncol., 18 (2017) 1574–1575.
  9. A. Sekar, G.K. Varghese, M.K. Ravi Varma, Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment, Heliyon, 5 (2019) e02918, doi: 10.1016/j.heliyon.2019.e02918.
  10. W. Abplanalp, N. DeJarnett, D.W. Riggs, D.J. Conklin, J.P. McCracken, S. Srivastava, Z. Xie, S. Rai, A. Bhatnagar, T.E. O’Toole, Benzene exposure is associated with cardiovascular disease risk, PLoS One, 12 (2017) e0183602, doi: 10.1371/journal.pone.0183602.
  11. H.A. Maksoud, M.G. Elharrif, M.K. Mahfouz, M.A. Omnia, M.H. Abdullah, M.E. Eltabey, Biochemical study on occupational inhalation of benzene vapours in petrol station, Respir. Med. Case Rep., 27 (2019) 100836, doi: 10.1016/j.rmcr.2019. 100836.
  12. R. Sun, K. Xu, Q. Zhang, X. Jiang, Z. Man, Plasma metabonomics investigation reveals involvement of fatty acid oxidation in hematotoxicity in Chinese benzene-exposed workers with low white blood cell count, Environ. Sci. Pollut. Res., 25 (2018) 32506–32514.
  13. H. Mohamed, M.A. Swani, M.I. Alaghib, A.I. Abdeljawad, M. Alkezza, M. Alobaidy, Hematological assessment of benzene exposure among employees in Brega Oil Marketing Company (BOMC), Benghazi. Int. Blood Res. Rev., 8 (2018) 1–7.
  14. B.D. Spycher, J.E. Lupatsch, A. Huss, J. Rischewski, Parental occupational exposure to benzene and the risk of childhood cancer: a census-based cohort study, Environ. Int., 108 (2017) 84–91.
  15. M. Talibov, J. Sormunen, J. Hansen, K. Kjaerheim, J.I. Martinsen, Benzene exposure at workplace and risk of colorectal cancer in four Nordic countries, Cancer Epidemiol., 55 (2018) 156–161.
  16. A. De Donno, M. De Giorgi, F. Bagordo, T. Grassi, A. Idolo, F. Serio, E. Ceretti, D. Feretti, M. Villarini, M. Moretti, A. Carducci, M. Verani, S. Bonetta, C. Pignata, S. Bonizzoni, A. Bonetti, U. Gelatti, MAPEC_LIFE Study Group, Health risk associated with exposure to PM10 and benzene in three Italian towns, Int. J. Environ. Res. Public Health, 15 (2018) 1672, doi: 10.3390/ijerph15081672.
  17. S.J. Varjani, E. Gnansounou, A. Pandey, Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms, Chemosphere, 188 (2017) 280–291.
  18. H. Huang, H. Huang, Q. Feng, G. Liu, Y. Zhan, M. Wu, Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation, Appl. Catal., B, 203 (2017) 870–878.
  19. H. Huang, G. Liu, Y. Zhan, Y. Xu, H. Lu, Photocatalytic oxidation of gaseous benzene under VUV irradiation over TiO2/zeolites catalysts, Catal. Today, 281 (2017) 649–655.
  20. R. Rashid, I. Shafiq, P. Akhter, M.J. Iqbal, M. Hussain, A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method, Environ. Sci. Pollut. Res., 28 (2021) 9050–9066.
  21. Q. Yang, X. Wang, W. Luo, J. Sun, Q. Xu, F. Chen, Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge, Bioresour. Technol., 247 (2018) 537–544.
  22. G.I. Danmaliki, T.A. Saleh, A.A. Shamsuddeen, Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon, Chem. Eng. J., 313 (2017) 993–1003.
  23. M.A. Islam, M. Ahmed, W. Khanday, M. Asif, B. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf., 138 (2017) 279–285.
  24. L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: a review, Particuology, 30 (2017) 1–14.
  25. S. Liu, B. Yu, S. Wang, Y. Shen, H Cong, Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles, Adv. Colloid Interface Sci., 281 (2020) 102165, doi: 10.1016/j.cis.2020.102165.
  26. M.Ş. Ece, A. Ekinci, S. Kutluay, Facile synthesis and comprehensive characterization of Ni-decorated amine groupsimmobilized Fe3O4@SiO2 magnetic nanoparticles having enhanced solar cell efficiency, J. Mater. Sci.: Mater. Electron., 32 (2021) 18192–18204.
  27. S. Kutluay, O. Şahin, M.S. Ece, Fabrication and characterization of Fe3O4/perlite, Fe3O4/perlite@SiO2,
    and Fe3O4/perlite@ SiO2@sulfanilamide magnetic nanomaterials, Appl. Phys. A, 128 (2022) 222–231.
  28. S. Kutluay, S. Horoz, O. Şahin, M.S. Ece, Highly improved solar cell efficiency of Mn-doped amine groups-functionalized magnetic Fe3O4@SiO2 nanomaterial, Energy Res., 45 (2021) 20176–20185.
  29. X. Yu, H. Yang, Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrenecoated magnetic nanoparticles, Food Chem., 217 (2017) 303–310.
  30. M. Abedi, M. Ahmadmoazzam, N. Jaafarzadeh, Removal of cationic tolonium chloride dye using Fe3O4 nanoparticles modified with sodium dodecyl sulfate, Chem. Biochem. Eng. Q., 32 (2018) 205–213.
  31. S. Shariati, M. Faraji, Y. Yamini, A.A. Rajabi, Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions, Desalination, 270 (2011) 160–165.
  32. C. Muthukumaran, V.M. Sivakumar, S. Sumathi, M. Thirumarimurugan, Adsorptive removal of recalcitrant auramine-O dye by sodium dodecyl sulfate functionalized magnetite nanoparticles: isotherm, kinetics, and fixed-bed column studies, Int. J. Nanosci., 19 (2020) 1950004, doi: 10.1142/ S0219581X19500042.
  33. F. Talebzadeh, S. Sobhanardakani, R. Zandipak, Effective adsorption of As(V) and V(V) ions from water samples using 2,4-dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles, Sep. Sci. Technol., 52 (2017) 622–633.
  34. Y. Fan, C. Zheng, H. Liu, C. He, Z. Shen, Effect of pH on the adsorption of arsenic(V) and antimony(V) by the black soil in three systems: performance and mechanism, Ecotoxicol. Environ. Saf., 191 (2020) 110145, doi: 10.1016/j.ecoenv.2019.110145.
  35. H. Anjum, K. Johari, N. Gnanasundaram, A. Appusamy, M. Thanabalan, Investigation of green functionalization of multiwall carbon nanotubes and its application in adsorption of benzene, toluene and p-xylene from aqueous solution, J. Cleaner Prod., 221 (2019) 323–338.
  36. M.M. Amin, B. Bina, A.M.S. Majd, Benzene removal by nano magnetic particles under continuous condition from aqueous solutions, Front. Environ. Sci. Eng., 8 (2014) 345–356.
  37. J.S. Costa, E.G. Bertizzolo, D. Bianchini, A.R. Fajardo, Adsorption of benzene and toluene from aqueous solution using a composite hydrogel of alginate-grafted with mesoporous silica, J. Hazard. Mater., 418 (2021) 126405, doi: 10.1016/j.jhazmat. 2021.126405.
  38. H. Pourzamani, Y. Hajizadeh, S. Fadaei, Efficiency enhancement of multi-walled carbon nanotubes by ozone for benzene removal from aqueous solution, Int. J. Environ. Health Eng., 4 (2015) 29–38.
  39. B.A. Abussaud, Synthesis, characterization and application of carbon nanotubes decorated with zinc oxide nanoparticles for removal of benzene, toluene and p-xylene from aqueous solution, Sustainability, 13 (2021) 11716, doi: 10.3390/su132111716.
  40. T.J. Al-Musawi, G. McKay, A. Kadhim, M.M. Joybari, Activated carbon prepared from hazelnut shell waste and magnetized by Fe3O4 nanoparticles for highly efficient adsorption of fluoride, Biomass Convers. Biorefin., (2022) 1–16, doi: 10.1007/s13399-022-02593-z.
  41. D. Balarak, H. Abasizadeh, J.K. Yang, M.J. Shim, S.M. Lee, Biosorption of acid orange 7 (AO7) dye by canola waste: equilibrium, kinetic and thermodynamics studies, Desal. Water Treat., 190 (2021) 230, 331–339.
  42. J. Akpa, C. Nmegbu, Adsorption of benzene on activated carbon from agricultural waste materials, Res. J. Chem. Sci., 4 (2014) 34–40.
  43. A.D. Khatibi, A.H. Mahvi, N. Mengelizadeh, D. Balarak, Adsorption–desorption of tetracycline onto molecularly imprinted polymer: isotherm, kinetics, and thermodynamics studies, Desal. Water Treat., 230 (2021) 240–251.
  44. S. Kutluay, O. Baytar, O. Şahin, Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from Elaeagnus angustifolia seeds, J. Environ. Chem. Eng., 7 (2019) 102947, doi: 10.1016/j.jece.2019.102947.
  45. T.J. Al-Musawi, N. Mengelizadeh, F. Ganji, C. Wang, D. Balarak, Preparation of multi-walled carbon nanotubes coated with CoFe2O4 nanoparticles and their adsorption performance for Bisphenol A compound, Adv. Powder Technol., 33 (2022) 103438, doi: 10.1016/j.apt.2022.103438.
  46. M.T. Raad, H. Behnejad, M.E. Jamal, Equilibrium and kinetic studies for the adsorption of benzene and toluene by graphene nanosheets: a comparison with carbon nanotubes, Surf. Interface Anal., 48 (2016) 117–125.
  47. R.A. Dyanati-Tilaki, Z. Yousefi, J. Yazdani-Cherati, The ability of Azolla and Lemna minor biomass for adsorption of phenol from aqueous solutions, J. Mazand. Univ. Med. Sci., 23 (2013) 140–146.
  48. M.I. Konggidinata, B. Chao, Q. Lian, R. Subramaniam, M. Zappi, Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto ordered mesoporous carbon (OMC), J. Hazard. Mater., 336 (2017) 249–259.
  49. R.A. Diyanati, Z. Yousefi, J.Y. Cherati, Investigating phenol absorption from aqueous solution by dried Azolla, J. Mazand. Univ. Med. Sci., 22 (2013) 13–21.
  50. E. Batur, O. Baytar, S. Kutluay, S. Horoz, O. Şahin, A comprehensive new study on the removal of Pb(II) from aqueous solution by şırnak coal-derived char, Environ. Technol., 42 (2021) 1–14.
  51. E. Batur, S. Kutluay, Dynamic adsorption behavior of benzene, toluene, and xylene VOCs in single- and
    multi-component systems by activated carbon derived from defatted black cumin (Nigella sativa L.) biowaste, J. Environ. Chem. Eng., 10 (2022) 107565, doi: 10.1016/j.jece.2022.107565.
  52. M. Şakir Ece, S. Kutluay, Comparative and competitive adsorption of gaseous toluene, ethylbenzene, and xylene onto natural cellulose-modified Fe3O4 nanoparticles, J. Environ. Chem. Eng., 10 (2022) 107389, doi: 10.1016/j.jece.2022.107389.
  53. S. Kutluay, Excellent adsorptive performance of novel magnetic nano-adsorbent functionalized with
    8-hydroxyquinoline-5-sulfonic acid for the removal of volatile organic compounds (BTX) vapors, Fuel, 287 (2021) 119691, doi: 10.1016/j.fuel.2020.119691.
  54. N. Genli, S. Kutluay, O. Şahin, Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization, Int. J. Phytorem., 24 (2022) 1–11.
  55. A. Meshkinain, B. Davoud, Y. Nastaran, Optimization of nickel oxide nanoparticle synthesis through the sol-gel method for adsorption of Penicillin G, Res. J. Chem. Environ., 25 (2021) 31–36.
  56. H. Azarpira, Y. Mahdavi, O. Khaleghi, D. Balarak, Thermodynamic studies on the removal of metronidazole antibiotic by multi-walled carbon nanotubes, Pharm. Lett., 8 (2016) 107–113.
  57. M. Sillanpää, A.H. Mahvi, D. Balarak, A.D. Khatibi, Adsorption of acid orange 7 dyes from aqueous solution using polypyrrole/nanosilica composite: experimental and modelling, Int. J. Environ. Anal. Chem., (2021), doi: 10.1080/03067319.2020.1855338.
  58. T.J. Al-Musawi, N. Mengelizade, O. Al Rawi, D. Balarak, Capacity and modeling of acid blue 113 dye adsorption onto chitosan magnetized by Fe2O3 nanoparticles, J. Polym. Environ., 30 (2022) 344–359.
  59. T.J. Al-Musawi, N. Mengelizade, M. Taghavi, S. Mohebi, D. Balarak, Activated carbon derived from Azolla filiculoides fern: a high-adsorption-capacity adsorbent for residual ampicillin in pharmaceutical wastewater, Biomass Convers. Biorefin., (2021), doi: 10.1007/s13399-021-01962-4.
  60. D. Balarak, M. Baniasadi, S.M. Lee, M.J. Shim, Ciprofloxacin adsorption onto Azolla filiculoides activated carbon from aqueous solutions, Desal. Water Treat., 218 (2021) 444–453.
  61. T.J. Al-Musawi, A.H. Mahvi, A.D. Khatibi, Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles, J. Porous Mater., 28 (2021) 835–852.
  62. D. Balarak, Z. Taheri, M.J. Shim, S.-M. Lee, C. Jeon, Adsorption kinetics and thermodynamics and equilibrium of ibuprofen from aqueous solutions by activated carbon prepared from Lemna minor, Desal. Water Treat., 215 (2021) 183–193.
  63. D. Balarak, A.H. Mahvi, M.J. Shim, S.M. Lee, Adsorption of ciprofloxacin from aqueous solution onto synthesized NiO: isotherm, kinetic and thermodynamic studies, Desal. Water Treat., 212 (2021) 390–400.