References
- D. Naghipour, J. Jaafari, S.D. Ashrafi, A.H. Mahvi, Remediation
of heavy metals contaminated silty clay loam soil by column
extraction with ethylenediaminetetraacetic acid and nitrilo
triacetic acid, J. Environ. Eng., 143 (2017) 0001219, doi: 10.1061/(ASCE)EE.1943-7870.0001219.
- M. Esmaeilzadeh, J. Jaafari, A.A. Mohammadi, M. Panahandeh,
A. Javid, S. Javan, Investigation of the extent of contamination
of heavy metals in agricultural soil using statistical analyses
and contamination indices, Hum. Ecol. Risk. Assess.: An Int. J.,
25 (2019) 1125–1136.
- Y.-J. Tu, T.-S. Chan, H.-W. Tu, S.-L. Wang, C.-F. You, C.-K. Chang,
Rapid and efficient removal/recovery of molybdenum onto
ZnFe2O4 nanoparticles, Chemosphere, 148 (2016) 452–458.
- M.L.C.M. Henckens, P.P.J. Driessen, E. Worrell, Molybdenum
resources: their depletion and safeguarding for future
generations, Resour. Conserv. Recycl., 134 (2018) 61–69.
- Z. Han, D. Wan, H. Tian, W. He, Z. Wang, Q. Liu, Pollution
assessment of heavy metals in soils and plants around a
molybdenum mine in Central China, Pol. J. Environ. Stud.,
28 (2018) 123–133.
- I. Timofeev, N. Kosheleva, N. Kasimov, Contamination of soils
by potentially toxic elements in the impact zone of tungstenmolybdenum
ore mine in the Baikal Region: a survey and
risk assessment, Sci. Total Environ., 642 (2018) 63–76.
- A. El-Naggar, S.M. Shaheen, Z.Y. Hseu, S.L. Wang, Y.S. Ok,
J. Rinklebe, Release dynamics of As, Co, and Mo in a biochar
treated soil under pre-definite redox conditions, Sci. Total
Environ., 657 (2019) 686–695.
- X. Wang, G. Brunetti, W. Tian, G. Owens, Y. Qu, C. Jin, E. Lombi,
Effect of soil amendments on molybdenum availability in mine
affected agricultural soils, Environ. Pollut., 269 (2021) 116132,
doi: 10.1016/j.envpol.2020.116132.
- L. Yao, Y. Liu, K. Yang, X. Xi, R. Niu, C. Ren, C. Wang, Spatialtemporal
analysis and background value determination of
molybdenum concentration in basins with high molybdenum
geochemical background - a case study of the Upper Yi River
Basin, J. Environ. Manage., 286 (2021) 112199, doi: 10.1016/j.jenvman.2021.112199.
- G. Tepanosyan, L. Sahakyan, C. Zhang, A. Saghatelyan, The
application of local Moran’s I to identify spatial clusters and
hot spots of Pb, Mo and Ti in urban soils of Yerevan, Appl.
Geochem., 104 (2019) 116–123.
- Z. Wang, C. Hong, Y. Xing, K. Wang, Y. Li, L. Feng, S. Ma,
Spatial distribution and sources of heavy metals in natural
pasture soil around copper-molybdenum mine in Northeast
China, Ecotoxicol. Environ. Saf., 154 (2018) 329–336.
- Y. Xu, X. Liang, Y. Xu, X. Qin, Q. Huang, L. Wang, Y. Sun,
Remediation of heavy metal-polluted agricultural soils using
clay minerals: a review, Pedosphere, 27 (2017) 193–204.
- Q. Kong, H. Zhang, Y. Lan, X. Shi, Z. Faang, Q. Chang, J. Liu,
C. Wei, Functional graphene oxide for organic pollutants
removal from wastewater: a mini review, Environ. Technol.,
(2021) 1–13, doi: 10.1080/09593330.2022.2053754.
- Q. Kong, X, Shi, W. Ma, F. Zhang, T. Yu, F. Zhao, D. Zhao,
C. Wei, Strategies to improve the adsorption properties of
graphene-based adsorbent towards heavy metal ions and their
compound pollutants: a review, J. Hazard. Mater., 415 (2021)
125690, doi: 10.1016/j.jhazmat.2021.125690.
- B.B. Qiu, X.D. Tao, H. Wang, W.K. Li, X. Ding, H.Q. Chu,
Biochar as a low-cost adsorbent for aqueous heavy metal
removal: a review, J. Anal. Appl. Pyrolysis, 155 (2021) 105081,
doi: 10.1016/j.jaap.2021.105081.
- S.M. Shaheen, J. Rinklebe, Sugar beet factory lime affects the
mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under
dynamic redox conditions in a contaminated floodplain soil,
J. Environ. Manage., 186 (2017) 253–260.
- P.L. Smedley, D.G. Kinniburgh, Molybdenum in natural waters:
a review of occurrence, distributions and controls, Appl.
Geochem., 84 (2017) 387–432.
- Y. Li, X. Tian, J. Liang, X. Chen, J. Ye, Y. Liu, Y. Liu, Y. Wei,
Remediation of hexavalent chromium in contaminated
soil using amorphous iron pyrite: effect on leachability,
bioaccessibility, phytotoxicity and long-term stability, Environ.
Pollut., 264 (2020) 114804, doi: 10.1016/j.envpol.2020.114804.
- Y.N. Chen, W.Y. Liang, Y.P. Li, Y.X. Wu, Y.R. Chen, W. Xiao,
L. Zhao, J.C. Zhang, H. Li, Modification, application and
reaction mechanisms of nano-sized iron sulfide particles for
pollutant removal from soil and water: a review, Chem. Eng. J.,
362 (2019) 144–159.
- D.S. Han, M. Orillano, A. Khodary, Y. Duan, B. Batchelor,
A. Abdel-Wahab, Reactive iron sulfide (FeS)-supported
ultrafiltration for removal of mercury (Hg(II)) from water,
Water Res., 53 (2014) 310–321.
- Y. Gong, J. Tang, D. Zhao, Application of iron sulfide particles
for groundwater and soil remediation: a review, Water Res., 89
(2016) 309–320.
- Y. Sun, Y. Liu, Z. Lou, K. Yang, D. Lv, J. Zhou, S.A. Baig, X. Xu,
Enhanced performance for Hg(II) removal using biomaterial
(CMC/gelatin/starch) stabilized FeS nanoparticles: stabilization
effects and removal mechanism, Chem. Eng. J., 344 (2018)
616–624.
- K. Mitchell, R.M. Couture, T.M. Johnson, P.R.D. Mason,
P. Van Cappellen, Selenium sorption and isotope fractionation:
iron(III) oxides versus iron(II) sulfides, Chem. Geol., 342 (2013)
21–28.
- Y.S. Han, H.Y. Jeong, A.H. Demond, K.F. Hayes, X-ray
absorption and photoelectron spectroscopic study of the
association of As(III) with nanoparticulate FeS and FeS-coated
sand, Water Res., 45 (2011) 5727–5735.
- J.J. Lian, H.L. Wang, H.P. He, W. Huang, M. Yang, Y. Zhong,
P. Peng, The reaction of amorphous iron sulfide with Mo(VI)
under different pH conditions, Chemosphere, 266 (2020)
128946, doi: 10.1016/j.chemosphere.2020.128946.
- E. He, C. Lü, J. He, B. Zhao, J. Wang, R. Zhang, T. Ding,
Binding characteristics of Cu2+ to natural humic acid fractions
sequentially extracted from the lake sediments, Environ. Sci.
Pollut. Res., 23 (2016) 1–11.
- T. Janda, G. Szalai, I. Tari, E. Páldi, Hydroponic treatment with
salicylic acid decreases the effects of chilling injury in maize
(Zea mays L.) plants, Planta, 208 (1999) 175–180.
- Y. Wang, Z. Fang, B. Liang, E.P. Tsang, Remediation of hexavalent
chromium contaminated soil by stabilized nanoscale zerovalent
iron prepared from steel pickling waste liquor, Chem.
Eng. J., 247 (2014) 283–290.
- D. Li, P.A. Peng, Z.Q. Yu, W.L. Huang, Y. Zhong, Reductive
transformation of hexabromocyclododecane (HBCD) by FeS,
Water Res., 101 (2016) 195–202.
- R. Gao, H. Hu, Q. Fu, Z. Li, Z. Xing, U. Ali, J. Zhu,
Y. Liu, Remediation of PB, Cd, and Cu contaminated soil
by co-pyrolysis biochar derived from rape straw and
orthophosphate: speciation transformation, risk evaluation and
mechanism inquiry, Sci. Total Environ., 730 (2020) 139119, doi:
10.1016/j.scitotenv.2020.139119.
- Y. Wang, Z. Fang, Y. Kang, E.P. Tsang, Immobilization and
phytotoxicity of chromium in contaminated soil remediated by
CMC-stabilized nZVI, J. Hazard. Mater., 275 (2014) 230–237.
- D.L. Wang, R.C. Aller, S.A. Sanudo-Wilhelmy, A new method
for the quantification of different redox-species of molybdenum
(V and VI) in seawater, Mar. Chem., 113 (2009) 250–256.
- A. Tessier, P.G. Campbell, M. Bisson, Sequential extraction
procedure for the speciation of particulate trace metals, Anal.
Chem., 51 (1979) 844–851.
- S. Brunauer, L.S. Demming, W.S. Demming, E. Teller, On a
theory of the van der Waals adsorption of gases, J. Am. Chem.
Soc., 62 (1940) 1723–1732.
- M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari,
A. Askari, M. Sillanpää, Adsorption isotherm models: a
comprehensive and systematic review (2010–2020), Sci. Total
Environ., 812 (2022) 151334, doi: 10.1016/j.scitotenv.2021.151334.
- S. Tian, Y. Gong, H. Ji, J. Duan, D. Zhao, Efficient removal and
long-term sequestration of cadmium from aqueous solution
using ferrous sulfide nanoparticles: performance, mechanisms,
and long-term stability, Sci. Total Environ., 704 (2020) 135402,
doi: 10.1016/j.scitotenv.2019.135402.
- D.L. Wang, R.C. Aller, S.A. Sanudo-Wilhelmy, Redox speciation
and early diagenetic behavior of dissolved molybdenum in
sulfidic muds, Mar. Chem., 125 (2011) 101–107.
- H. Jia, C. Wang, Dechlorination of chlorinated phenols by
subnanoscale Pd0/Fe0 intercalated in smectite: pathway,
reactivity, and selectivity, J. Hazard. Mater., 300 (2015) 779–787.
- K. Zhao, Y. Yang, H. Peng, L. Zhang, Y. Zhou, J. Zhang, C. Du,
J. Liu, X. Lin, N. Wang, H. Huang, L. Luo, Silicon fertilizers,
humic acid and their impact on physicochemical properties,
availability and distribution of heavy metals in soil and soil
aggregates, Sci. Total Environ., 822 (2022) 153483, doi: 10.1016/j.scitotenv.2022.153483.
- H. Slater, T. Gouin, M.B. Leigh, Assessing the potential for
rhizoremediation of PCB contaminated soils in northern regions
using native tree species, Chemosphere, 84 (2011) 199–206.
- X.H. Cao, J. Guo, J. Mao, Y. Lan, Adsorption and mobility of
Cr(III)-organic acid complexes in soils, J. Hazard. Mater., 192
(2011) 1533–1538.
- M.P. Schmidt, S.D. Siciliano, D. Peak, The role of monodentate
tetrahedral borate complexes in boric acid binding to a soil
organic matter analogue, Chemosphere, 276 (2021) 130150, doi: 10.1016/j.chemosphere.2021.130150.
- B. Chen, F.J. Zhou, J.J. Lian, L.M. Wang, P. Wang, M. Wu,
T.N. Wang, Q. Xu, Removal of molybdenum(VI) by nanoscale
iron sulfide: kinetics and influence factors, Desal. Water Treat.,
217 (2021) 203–213.
- J. Zhang, X. Ma, S. Wang, M.A. Gomez, S. Yao, Y. Jia, The
effects of pH, neutralizing reagent and co-ions on Mo(VI)
removal and speciation in Fe(III)–Mo(VI) coprecipitation
process, Appl. Geochem., 134 (2021) 105091, doi: 10.1016/j.
apgeochem.2021.105091.
- G. Choppala, N. Bolan, A. Kunhikrishnan, W. Skinner,
B. Seshadri, Concomitant reduction and immobilization of
chromium in relation to its bioavailability in soils, Environ. Sci.
Pollut. Res., 22 (2013) 8969–8978.