References

  1. D. Naghipour, J. Jaafari, S.D. Ashrafi, A.H. Mahvi, Remediation of heavy metals contaminated silty clay loam soil by column extraction with ethylenediaminetetraacetic acid and nitrilo triacetic acid, J. Environ. Eng., 143 (2017) 0001219, doi: 10.1061/(ASCE)EE.1943-7870.0001219.
  2. M. Esmaeilzadeh, J. Jaafari, A.A. Mohammadi, M. Panahandeh, A. Javid, S. Javan, Investigation of the extent of contamination of heavy metals in agricultural soil using statistical analyses and contamination indices, Hum. Ecol. Risk. Assess.: An Int. J., 25 (2019) 1125–1136.
  3. Y.-J. Tu, T.-S. Chan, H.-W. Tu, S.-L. Wang, C.-F. You, C.-K. Chang, Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles, Chemosphere, 148 (2016) 452–458.
  4. M.L.C.M. Henckens, P.P.J. Driessen, E. Worrell, Molybdenum resources: their depletion and safeguarding for future generations, Resour. Conserv. Recycl., 134 (2018) 61–69.
  5. Z. Han, D. Wan, H. Tian, W. He, Z. Wang, Q. Liu, Pollution assessment of heavy metals in soils and plants around a molybdenum mine in Central China, Pol. J. Environ. Stud., 28 (2018) 123–133.
  6. I. Timofeev, N. Kosheleva, N. Kasimov, Contamination of soils by potentially toxic elements in the impact zone of tungstenmolybdenum ore mine in the Baikal Region: a survey and risk assessment, Sci. Total Environ., 642 (2018) 63–76.
  7. A. El-Naggar, S.M. Shaheen, Z.Y. Hseu, S.L. Wang, Y.S. Ok, J. Rinklebe, Release dynamics of As, Co, and Mo in a biochar treated soil under pre-definite redox conditions, Sci. Total Environ., 657 (2019) 686–695.
  8. X. Wang, G. Brunetti, W. Tian, G. Owens, Y. Qu, C. Jin, E. Lombi, Effect of soil amendments on molybdenum availability in mine affected agricultural soils, Environ. Pollut., 269 (2021) 116132, doi: 10.1016/j.envpol.2020.116132.
  9. L. Yao, Y. Liu, K. Yang, X. Xi, R. Niu, C. Ren, C. Wang, Spatialtemporal analysis and background value determination of molybdenum concentration in basins with high molybdenum geochemical background - a case study of the Upper Yi River Basin, J. Environ. Manage., 286 (2021) 112199, doi: 10.1016/j.jenvman.2021.112199.
  10. G. Tepanosyan, L. Sahakyan, C. Zhang, A. Saghatelyan, The application of local Moran’s I to identify spatial clusters and hot spots of Pb, Mo and Ti in urban soils of Yerevan, Appl. Geochem., 104 (2019) 116–123.
  11. Z. Wang, C. Hong, Y. Xing, K. Wang, Y. Li, L. Feng, S. Ma, Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China, Ecotoxicol. Environ. Saf., 154 (2018) 329–336.
  12. Y. Xu, X. Liang, Y. Xu, X. Qin, Q. Huang, L. Wang, Y. Sun, Remediation of heavy metal-polluted agricultural soils using clay minerals: a review, Pedosphere, 27 (2017) 193–204.
  13. Q. Kong, H. Zhang, Y. Lan, X. Shi, Z. Faang, Q. Chang, J. Liu, C. Wei, Functional graphene oxide for organic pollutants removal from wastewater: a mini review, Environ. Technol., (2021) 1–13, doi: 10.1080/09593330.2022.2053754.
  14. Q. Kong, X, Shi, W. Ma, F. Zhang, T. Yu, F. Zhao, D. Zhao, C. Wei, Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: a review, J. Hazard. Mater., 415 (2021) 125690, doi: 10.1016/j.jhazmat.2021.125690.
  15. B.B. Qiu, X.D. Tao, H. Wang, W.K. Li, X. Ding, H.Q. Chu, Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review, J. Anal. Appl. Pyrolysis, 155 (2021) 105081, doi: 10.1016/j.jaap.2021.105081.
  16. S.M. Shaheen, J. Rinklebe, Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil, J. Environ. Manage., 186 (2017) 253–260.
  17. P.L. Smedley, D.G. Kinniburgh, Molybdenum in natural waters: a review of occurrence, distributions and controls, Appl. Geochem., 84 (2017) 387–432.
  18. Y. Li, X. Tian, J. Liang, X. Chen, J. Ye, Y. Liu, Y. Liu, Y. Wei, Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: effect on leachability, bioaccessibility, phytotoxicity and long-term stability, Environ. Pollut., 264 (2020) 114804, doi: 10.1016/j.envpol.2020.114804.
  19. Y.N. Chen, W.Y. Liang, Y.P. Li, Y.X. Wu, Y.R. Chen, W. Xiao, L. Zhao, J.C. Zhang, H. Li, Modification, application and reaction mechanisms of nano-sized iron sulfide particles for pollutant removal from soil and water: a review, Chem. Eng. J., 362 (2019) 144–159.
  20. D.S. Han, M. Orillano, A. Khodary, Y. Duan, B. Batchelor, A. Abdel-Wahab, Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water, Water Res., 53 (2014) 310–321.
  21. Y. Gong, J. Tang, D. Zhao, Application of iron sulfide particles for groundwater and soil remediation: a review, Water Res., 89 (2016) 309–320.
  22. Y. Sun, Y. Liu, Z. Lou, K. Yang, D. Lv, J. Zhou, S.A. Baig, X. Xu, Enhanced performance for Hg(II) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: stabilization effects and removal mechanism, Chem. Eng. J., 344 (2018) 616–624.
  23. K. Mitchell, R.M. Couture, T.M. Johnson, P.R.D. Mason, P. Van Cappellen, Selenium sorption and isotope fractionation: iron(III) oxides versus iron(II) sulfides, Chem. Geol., 342 (2013) 21–28.
  24. Y.S. Han, H.Y. Jeong, A.H. Demond, K.F. Hayes, X-ray absorption and photoelectron spectroscopic study of the association of As(III) with nanoparticulate FeS and FeS-coated sand, Water Res., 45 (2011) 5727–5735.
  25. J.J. Lian, H.L. Wang, H.P. He, W. Huang, M. Yang, Y. Zhong, P. Peng, The reaction of amorphous iron sulfide with Mo(VI) under different pH conditions, Chemosphere, 266 (2020) 128946, doi: 10.1016/j.chemosphere.2020.128946.
  26. E. He, C. Lü, J. He, B. Zhao, J. Wang, R. Zhang, T. Ding, Binding characteristics of Cu2+ to natural humic acid fractions sequentially extracted from the lake sediments, Environ. Sci. Pollut. Res., 23 (2016) 1–11.
  27. T. Janda, G. Szalai, I. Tari, E. Páldi, Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants, Planta, 208 (1999) 175–180.
  28. Y. Wang, Z. Fang, B. Liang, E.P. Tsang, Remediation of hexavalent chromium contaminated soil by stabilized nanoscale zerovalent iron prepared from steel pickling waste liquor, Chem. Eng. J., 247 (2014) 283–290.
  29. D. Li, P.A. Peng, Z.Q. Yu, W.L. Huang, Y. Zhong, Reductive transformation of hexabromocyclododecane (HBCD) by FeS, Water Res., 101 (2016) 195–202.
  30. R. Gao, H. Hu, Q. Fu, Z. Li, Z. Xing, U. Ali, J. Zhu, Y. Liu, Remediation of PB, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: speciation transformation, risk evaluation and mechanism inquiry, Sci. Total Environ., 730 (2020) 139119, doi: 10.1016/j.scitotenv.2020.139119.
  31. Y. Wang, Z. Fang, Y. Kang, E.P. Tsang, Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI, J. Hazard. Mater., 275 (2014) 230–237.
  32. D.L. Wang, R.C. Aller, S.A. Sanudo-Wilhelmy, A new method for the quantification of different redox-species of molybdenum (V and VI) in seawater, Mar. Chem., 113 (2009) 250–256.
  33. A. Tessier, P.G. Campbell, M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51 (1979) 844–851.
  34. S. Brunauer, L.S. Demming, W.S. Demming, E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62 (1940) 1723–1732.
  35. M. Mozaffari Majd, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, M. Sillanpää, Adsorption isotherm models: a comprehensive and systematic review (2010–2020), Sci. Total Environ., 812 (2022) 151334, doi: 10.1016/j.scitotenv.2021.151334.
  36. S. Tian, Y. Gong, H. Ji, J. Duan, D. Zhao, Efficient removal and long-term sequestration of cadmium from aqueous solution using ferrous sulfide nanoparticles: performance, mechanisms, and long-term stability, Sci. Total Environ., 704 (2020) 135402, doi: 10.1016/j.scitotenv.2019.135402.
  37. D.L. Wang, R.C. Aller, S.A. Sanudo-Wilhelmy, Redox speciation and early diagenetic behavior of dissolved molybdenum in sulfidic muds, Mar. Chem., 125 (2011) 101–107.
  38. H. Jia, C. Wang, Dechlorination of chlorinated phenols by subnanoscale Pd0/Fe0 intercalated in smectite: pathway, reactivity, and selectivity, J. Hazard. Mater., 300 (2015) 779–787.
  39. K. Zhao, Y. Yang, H. Peng, L. Zhang, Y. Zhou, J. Zhang, C. Du, J. Liu, X. Lin, N. Wang, H. Huang, L. Luo, Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates, Sci. Total Environ., 822 (2022) 153483, doi: 10.1016/j.scitotenv.2022.153483.
  40. H. Slater, T. Gouin, M.B. Leigh, Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species, Chemosphere, 84 (2011) 199–206.
  41. X.H. Cao, J. Guo, J. Mao, Y. Lan, Adsorption and mobility of Cr(III)-organic acid complexes in soils, J. Hazard. Mater., 192 (2011) 1533–1538.
  42. M.P. Schmidt, S.D. Siciliano, D. Peak, The role of monodentate tetrahedral borate complexes in boric acid binding to a soil organic matter analogue, Chemosphere, 276 (2021) 130150, doi: 10.1016/j.chemosphere.2021.130150.
  43. B. Chen, F.J. Zhou, J.J. Lian, L.M. Wang, P. Wang, M. Wu, T.N. Wang, Q. Xu, Removal of molybdenum(VI) by nanoscale iron sulfide: kinetics and influence factors, Desal. Water Treat., 217 (2021) 203–213.
  44. J. Zhang, X. Ma, S. Wang, M.A. Gomez, S. Yao, Y. Jia, The effects of pH, neutralizing reagent and co-ions on Mo(VI) removal and speciation in Fe(III)–Mo(VI) coprecipitation process, Appl. Geochem., 134 (2021) 105091, doi: 10.1016/j. apgeochem.2021.105091.
  45. G. Choppala, N. Bolan, A. Kunhikrishnan, W. Skinner, B. Seshadri, Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils, Environ. Sci. Pollut. Res., 22 (2013) 8969–8978.