References
- A.T. Lima, P.J. Kleingeld, K. Heister, J.P.G. Loch, In situ electroosmotic
cleanup of tar contaminated soil—removal of polycyclic
aromatic hydrocarbons, Electrochim. Acta, 86 (2012) 142–147.
- X. Yan, X. Hu, T. Chen, S. Zhang, M. Zhou, Adsorptive
removal of 1-naphthol from water with zeolitic imidazolate
framework-67, J. Phys. Chem. Solids, 107 (2017) 50–54.
- J.D. Meeker, D.B. Barr, B. Serdar, S.M. Rappaport, R. Hauser,
Utility of urinary 1-naphthol and 2-naphthol levels to assess
environmental carbaryl and naphthalene exposure in an
epidemiology study, J. Exposure Sci. Environ. Epidemiol.,
17 (2007) 314–320.
- X. Wang, C. Chen, J. Li, X. Wang, Ozone degradation of
1-naphthol on multiwalled carbon nanotubes/iron oxides and
recycling of the adsorbent, Chem. Eng. J., 262 (2015) 1303–1310.
- C. Karunakaran, S. Narayanan, P. Gomathisankar, Photocatalytic
degradation of 1-naphthol by oxide ceramics with added
bacterial disinfection, J. Hazard. Mater., 181 (2010) 708–715.
- J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen,
J.T. Hupp, Metal–organic framework materials as catalysts,
Chem. Soc. Rev., 38 (2009) 1450–1459.
- X. Yang, Y. Zhang, L. Wang, L. Cao, K. Li, A. Hursthouse,
Preparation of a thermally modified diatomite and a removal
mechanism for 1-naphthol from solution, Water, 9 (2017) 651,
doi: 10.3390/w9090651.
- X. Yan, X. Hu, T. Chen, S. Zhang, M. Zhou, Adsorptive
removal of 1-naphthol from water with zeolitic imidazolate
framework-67, J. Phys. Chem. Solids, 107 (2017) 50–54.
- H. Zheng, Y. Gao, K. Zhu, Q. Wang, M. Wakeel, A. Wahid,
N.S. Alharbi, C. Chen, Investigation of the adsorption
mechanisms of Pb(II) and 1-naphthol by β-cyclodextrin
modified graphene oxide nanosheets from aqueous solution, J.
Colloid Interface Sci., 530 (2018) 154–162.
- Q. Zhou, Y. Wang, J. Xiao, H. Fan, Adsorption and removal of
bisphenol A, α-naphthol and β-naphthol from aqueous solution
by Fe3O4@polyaniline core–shell nanomaterials, Synth. Met.,
212 (2016) 113–122.
- R. Sreekanth, K.P. Prasanthkumar, M.M. Sunil Paul,
U.K. Aravind, C.T. Aravindakumar, Oxidation reactions of 1-
and 2-naphthols: an experimental and theoretical study, J. Phys.
Chem. A, 117 (2013) 11261–11270.
- T. Ngo, N. Hoang, T. Tran, Radiolysis of 1-naphthol in aqueous
solutions, J. Radioanal. Nucl. Chem., 286 (2010) 287–293.
- M. Harsini, Y.G.Y. Suyanto, L. Rhodifasari, H. Darmokoesomo,
Electrochemical degradation of naphtol AS-BO batik dyes,
J. Chem. Technol. Metall., 52 (2017) 1116–1122.
- F. Xu, D.E. Koch, I.C. Kong, R.P. Hunter, A. Bhandari, Peroxidasemediated
oxidative coupling of 1-naphthol: characterization of
polymerization products, Water Res., 39 (2005) 2358–2368.
- X. Wang, C. Chen, J. Li, X. Wang, Ozone degradation of
1-naphthol on multiwalled carbon nanotubes/iron oxides and
recycling of the adsorbent, Chem. Eng. J., 262 (2015) 1303–1310.
- X. Yan, X. Hu, T. Chen, S. Zhang, M. Zhou, Adsorptive
removal of 1-naphthol from water with zeolitic imidazolate
framework-67, J. Phys. Chem. Solids, 107 (2017) 50–54.
- M.J. Santos, M.C. Medeiros, T.M. Oliveira, C.C. Morais,
S.E. Mazzetto, C.A. Martínez-Huitle, S.S. Castro, Electrooxidation
of cardanol on mixed metal oxide (RuO2-TiO2 and IrO2-RuO2-TiO2) coated titanium anodes: insights into recalcitrant
phenolic compounds, Electrochim. Acta, 212 (2016) 95–101.
- M.J. Pacheco, V. Santos, L. Ciríaco, A. Lopes, Electrochemical
degradation of aromatic amines on BDD electrodes, J. Hazard.
Mater., 186 (2011) 1033–1041.
- C. Zhou, Y. Wang, J. Chen, J. Niu, Electrochemical degradation
of sunscreen agent benzophenone-3 and its metabolite by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, mechanism, toxicity and
energy consumption, Sci. Total Environ., 688 (2019) 75–82.
- C. Wang, L. Yin, Z. Xu, J. Niu, L.A. Hou, Electrochemical
degradation of enrofloxacin by lead dioxide anode: kinetics,
mechanism and toxicity evaluation, Chem. Eng. J., 326 (2017)
911–920.
- S. Gao, Y. Chen, J. Su, M. Wang, X. Wei, T. Jiang, Z.L. Wang,
Triboelectric nanogenerator powered electrochemical
degradation of organic pollutant using Pt-free carbon materials,
ACS Nano, 11 (2017) 3965–3972.
- Y. Yao, G. Teng, Y. Yang, B. Ren, L. Cui, Electrochemical
degradation of neutral red on PbO2/α-Al2O3 composite
electrodes: electrode characterization, by-products and
degradation mechanism, Sep. Purif. Technol., 227 (2019) 115684,
doi: 10.1016/j.seppur.2019.115684.
- M. Shestakova, M. Sillanpää, Electrode materials used for
electrochemical oxidation of organic compounds in wastewater,
Rev. Environ. Sci. Biotechnol., 16 (2017) 223–238.
- L. Zhou, W. Song, Z. Chen, G. Yin, Degradation of organic
pollutants in wastewater by bicarbonate-activated hydrogen
peroxide with a supported cobalt catalyst, Environ. Sci.
Technol., 47 (2013) 3833–3839.
- A. Yaqub, M.H. Isa, H. Ajab, Electrochemical degradation
of polycyclic aromatic hydrocarbons in synthetic solution
and produced water using a Ti/SnO2-Sb2O5-RuO2 anode,
J. Environ. Eng., 141 (2015) 04014074, doi: 10.1061/(ASCE)EE.1943-7870.0000900.
- X. Song, Q. Shi, H. Wang, S. Liu, C. Tai, Z. Bian, Preparation
of Pd-Fe/graphene catalysts by photocatalytic reduction with
enhanced electrochemical oxidation-reduction properties for
chlorophenols, Appl. Catal., B, 203 (2017) 442–451.
- Q. Shi, H. Wang, S. Liu, L. Pang, Z. Bian, Electrocatalytic
reduction-oxidation of chlorinated phenols using a
nanostructured Pd-Fe modified graphene catalyst, Electrochim.
Acta, 178 (2015) 92–100.
- H. Setiyanto, F.M. Sari, M.Y. Azis, R.S. Rahayu, A. Sulaeman,
M.A. Zulfikar, D. Ratnaningrum, V. Saraswaty, Electrochemical
degradation of methylene blue using Ce(IV) ionic mediator in
the presence of Ag(I) ion catalyst for environmental remediation,
51 (2021) 149–159.
- R.V. McQuillan, G.W. Stevens, K.A. Mumford, Electrochemical
removal of naphthalene from contaminated waters
using carbon electrodes, and viability for environmental
deployment, J. Hazard. Mater., 383 (2020) 121244, doi: 10.1016/j.jhazmat.2019.121244.
- K. Tian, K. Baskaran, A. Tiwari, Nonenzymatic glucose sensing
using metal oxides–comparison of CuO, Co3O4, and NiO,
Vacuum, 155 (2018) 696–701.
- G. Manjari, S. Saran, T. Arun, A.V. Rao, S.P. Devipriya, Catalytic
and recyclability properties of phytogenic copper oxide
nanoparticles derived from Aglaia elaeagnoidea flower extract,
J. Saudi Chem. Soc., 21 (2017) 610–618.
- Z. Ma, Cobalt oxide catalysts for environmental remediation,
Curr. Catal., 3 (2014) 15–26.
- A. Haider, M. Ijaz, S. Ali, J. Haider, M. Imran, H. Majeed,
I. Shahzadi, M.M. Ali, J.A. Khan, M. Ikram, Green synthesized
phytochemically (Zingiber officinale and Allium sativum) reduced
nickel oxide nanoparticles confirmed bactericidal and catalytic
potential, Nanoscale Res. Lett., 15 (2020) 50,
doi: 10.1186/s11671-020-3283-5.
- F.K. Tan, J. Hassan, Z.A. Wahab, Electrical conductivity and
dielectric studies of MnO2 doped V2O5, Results Phys., 6 (2016)
420–427.
- M. Rasouli, H. Atashi, D. Mohebbi-Kalhori, N. Yaghobi,
Bifunctional Pt/Fe-ZSM-5 catalyst for xylene isomerization,
J. Taiwan Inst. Chem. Eng., 78 (2017) 438–446.
- Z.H. He, N. Li, K. Wang, W.T. Wang, Z.T. Liu, Selective
hydrogenation of quinolines over a CoCu bimetallic catalyst at
low temperature, J. Mol. Catal. B: Enzym., 470 (2019) 120–126.
- S.P. Kamble, V.D. Mote, Optical and room-temperature
ferromagnetic properties of Ni-doped CuO nanocrystals
prepared via auto-combustion method, J. Mater. Sci.: Mater.
Electron., 32 (2021) 5309–5315.
- P. Viswanathan, K. Wang, J. Li, J.D. Hong, Multicore–shell
Ag–CuO networked with CuO nanorods for enhanced nonenzymatic
glucose detection, Colloids Surf., A, 598 (2020)
124816, doi: 10.1016/j.colsurfa.2020.124816.
- L. Barrientos, S. Rodriguez-Llamazares, J. Merchani, P. Jara,
N. Yutronic, V. Lavayen, Unveiling the structure of Ni/Ni oxide
nanoparticles system, J. Chil. Chem. Soc., 54 (2009) 391–393.
- N. Rahemi, M. Haghighi, A.A. Babaluo, S. Allahyari, M.F. Jafari,
Syngas production from reforming of greenhouse gases CH4/CO2 over Ni–Cu/Al2O3 nanocatalyst: impregnated vs. plasmatreated
catalyst, Energy Convers. Manage., 84 (2014) 50–59.
- M.P. Srinivasan, N. Punithavelan, Structural, morphological
and dielectric investigations on NiO/CuO/ZnO combined
semiconductor metal oxide structures based ternary
nanocomposites, Mater. Res. Express, 5 (2018) 075033, doi:
10.1088/2053-1591/aad079.
- R.T. Rasheed, H.S. Mansoor, A.S. Mansoor, New colorimetric
method to determine catalase mimic activity, Mater. Res.
Express, 7 (2020) 025405, doi: 10.1088/2053-1591/ab706b.
- H. Jiang, L. Yang, C. Li, C. Yan, P.S. Lee, J. Ma, High–rate
electrochemical capacitors from highly graphitic carbon–tipped
manganese oxide/mesoporous carbon/manganese oxide hybrid
nanowires, Energy Environ. Sci., 4 (2011) 1813–1819.
- X. Zhang, J.G. Wang, H. Liu, H. Liu, B. Wei, Facile synthesis
of V2O5 hollow spheres as advanced cathodes for highperformance
lithium-ion batteries, Materials, 10 (2017) 77, doi:
10.3390/ma10010077.
- D.M. Alqahtani, C. Zequine, C.K. Ranaweera, K. Siam,
P.K. Kahol, T.P. Poudel, S.R. Mishra, R.K. Gupta, Effect of metal
ion substitution on electrochemical properties of cobalt oxide,
J. Alloys Compd., 771 (2019) 951–959.
- H.M. Robert, D. Usha, M. Amalanathan, R.R.J. Geetha,
M.S.M. Mary, Spectroscopic (IR, Raman, UV, NMR)
characterization and investigation of reactive properties of
pyrazine-2-carboxamide by anti-bacterial, anti-mycobacterial,
Fukui function, molecular docking and DFT calculations, Chem.
Data Collect., 30 (2020) 100583, doi: 10.1016/j.cdc.2020.100583.
- U. Riaz, N. Singh, P. Kumar, Ultrasound-assisted synthesis
of fluorescent oligomers of triphenylamine modified
polyquinones: a comparison of experimental and computational
spectral studies, J. Mol. Struct., 1217 (2020) 128374, doi: 10.1016/j.molstruc.2020.128374.
- T.F. Borgati, J.D.D. Souza Filho, A.B.D. Oliveira, A complete
and unambiguous 1H and 13C-NMR signals assignment of paranaphthoquinones,
ortho-and para-furanonaphthoquinones,
J. Braz. Chem. Soc., 30 (2019) 1138–1149.
- J.W. Daniel, H. Bratt, The absorption, metabolism and tissue
distribution of di(2-ethylhexyl) phthalate in rats, Toxicology,
2 (1974) 51–65.
- M.R. Habib, M.R. Karim, Antimicrobial and cytotoxic activity of
di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate
isolated from Calotropis gigantea (Linn.) flower, Mycobiology,
37 (2009) 31–36.
- G.N. Rao, P.M. Kumar, V.S. Dhandapani, T.R. Krishna,
T. Hayashi, Constituents of Cassia auriculata, Fitoterapia, 71
(2000) 82–83.
- P. Amade, M. Mallea, N. Bouaicha, Isolation, structural
identification and biological activity of two metabolites
produced by Penicillium olsonii Bainier and Sartory, J. Antibiot.,
47 (1994) 201–208.
- D. Jalil, N.A. Fakhre, Extraction, identification and determination
of di-(2ethylhexyl) phthalate (DEHP) plasticizer in some stored
blood samples bags using different spectroscopic techniques,
Ibn AL-Haitham J. Pure Appl. Sci. Technol., 29 (2017) 155–170.
- Q. Du, L. Shen, L. Xiu, G. Jerz, P. Winterhalter, Di-2-ethylhexyl
phthalate in the fruits of Benincasa hispida, Food Addit. Contam.,
23 (2006) 552–555.
- R. Pournejati, R. Gust, J. Sagasser, B. Kircher, K. Jöhrer,
M.M. Ghanbari, H.R. Karbalaei-Heidari, In vitro evaluation of
cytotoxic effects of di(2-ethylhexyl) phthalate (DEHP) produced
by Bacillus velezensis strain RP137 isolated from Persian Gulf,
Toxicol. in Vitro, 73 (2021) 105148, doi: 10.1016/j.tiv.2021.105148.
- M.M. Lotfy, H.M. Hassan, M.H. Hetta, A.O. El-Gendy,
R. Mohammed, Di-(2-ethylhexyl) phthalate, a major bioactive
metabolite with antimicrobial and cytotoxic activity isolated
from River Nile derived fungus Aspergillus awamori, Beni-Seuf
Univ. J. Basic Appl. Sci., 7 (2018) 263–269.
- D. Jalil, N.A. Fakhre, Extraction, identification and
determination of di-(2ethylhexyl) phthalate (DEHP)
plasticizer in some stored blood samples bags using different
spectroscopic techniques, Ibn Al-Haitham J. Pure Appl. Sci.
Technol., 29 (2017) 155–170.
- U.M. Sani, U.U. Pateh, Isolation of 1, 2-benzenedicarboxylic
acid bis (2-ethylhexyl) ester from methanol extract of the variety
minor seeds of Ricinus communis Linn. (Euphorbiaceae), Nig. J.
Pharm. Sci., 8 (2009) 107–114.
- H. Shen, L. Ying, Y. Cao, G. Pan, L. Zhou, Simultaneous
determination of phthalates and parabens in cosmetic products
by gas chromatography/mass spectrometry coupled with
solid phase extraction, Chin. J. Chromatogr. (Se Pu), 25 (2007)
272–275.
- Y. Kudo, K. Obayashi, H. Yanagisawa, F. Maruyama, S. Fujimaki,
H. Miyagawa, K. Nakagawa, Development of a screening
method for phthalate esters in polymers using a quantitative
database in combination with pyrolyzer/thermal desorption
gas chromatography mass spectrometry, J. Chromatogr. A, 1602
(2019) 441–449.
- V.N. Kouloumbos, D.F. Tsipi, A.E. Hiskia, D. Nikolic, R.B. van
Breemen, Identification of photocatalytic degradation products
of diazinon in TiO2 aqueous suspensions using GC/MS/MS
and LC/MS with quadrupole time-of-flight mass spectrometry,
J. Am. Soc. Mass Spectrom., 14 (2003) 803–817.