References

  1. A.T. Lima, P.J. Kleingeld, K. Heister, J.P.G. Loch, In situ electroosmotic cleanup of tar contaminated soil—removal of polycyclic aromatic hydrocarbons, Electrochim. Acta, 86 (2012) 142–147.
  2. X. Yan, X. Hu, T. Chen, S. Zhang, M. Zhou, Adsorptive removal of 1-naphthol from water with zeolitic imidazolate framework-67, J. Phys. Chem. Solids, 107 (2017) 50–54.
  3. J.D. Meeker, D.B. Barr, B. Serdar, S.M. Rappaport, R. Hauser, Utility of urinary 1-naphthol and 2-naphthol levels to assess environmental carbaryl and naphthalene exposure in an epidemiology study, J. Exposure Sci. Environ. Epidemiol., 17 (2007) 314–320.
  4. X. Wang, C. Chen, J. Li, X. Wang, Ozone degradation of 1-naphthol on multiwalled carbon nanotubes/iron oxides and recycling of the adsorbent, Chem. Eng. J., 262 (2015) 1303–1310.
  5. C. Karunakaran, S. Narayanan, P. Gomathisankar, Photocatalytic degradation of 1-naphthol by oxide ceramics with added bacterial disinfection, J. Hazard. Mater., 181 (2010) 708–715.
  6. J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts, Chem. Soc. Rev., 38 (2009) 1450–1459.
  7. X. Yang, Y. Zhang, L. Wang, L. Cao, K. Li, A. Hursthouse, Preparation of a thermally modified diatomite and a removal mechanism for 1-naphthol from solution, Water, 9 (2017) 651, doi: 10.3390/w9090651.
  8. X. Yan, X. Hu, T. Chen, S. Zhang, M. Zhou, Adsorptive removal of 1-naphthol from water with zeolitic imidazolate framework-67, J. Phys. Chem. Solids, 107 (2017) 50–54.
  9. H. Zheng, Y. Gao, K. Zhu, Q. Wang, M. Wakeel, A. Wahid, N.S. Alharbi, C. Chen, Investigation of the adsorption mechanisms of Pb(II) and 1-naphthol by β-cyclodextrin modified graphene oxide nanosheets from aqueous solution, J. Colloid Interface Sci., 530 (2018) 154–162.
  10. Q. Zhou, Y. Wang, J. Xiao, H. Fan, Adsorption and removal of bisphenol A, α-naphthol and β-naphthol from aqueous solution by Fe3O4@polyaniline core–shell nanomaterials, Synth. Met., 212 (2016) 113–122.
  11. R. Sreekanth, K.P. Prasanthkumar, M.M. Sunil Paul, U.K. Aravind, C.T. Aravindakumar, Oxidation reactions of 1- and 2-naphthols: an experimental and theoretical study, J. Phys. Chem. A, 117 (2013) 11261–11270.
  12. T. Ngo, N. Hoang, T. Tran, Radiolysis of 1-naphthol in aqueous solutions, J. Radioanal. Nucl. Chem., 286 (2010) 287–293.
  13. M. Harsini, Y.G.Y. Suyanto, L. Rhodifasari, H. Darmokoesomo, Electrochemical degradation of naphtol AS-BO batik dyes, J. Chem. Technol. Metall., 52 (2017) 1116–1122.
  14. F. Xu, D.E. Koch, I.C. Kong, R.P. Hunter, A. Bhandari, Peroxidasemediated oxidative coupling of 1-naphthol: characterization of polymerization products, Water Res., 39 (2005) 2358–2368.
  15. X. Wang, C. Chen, J. Li, X. Wang, Ozone degradation of 1-naphthol on multiwalled carbon nanotubes/iron oxides and recycling of the adsorbent, Chem. Eng. J., 262 (2015) 1303–1310.
  16. X. Yan, X. Hu, T. Chen, S. Zhang, M. Zhou, Adsorptive removal of 1-naphthol from water with zeolitic imidazolate framework-67, J. Phys. Chem. Solids, 107 (2017) 50–54.
  17. M.J. Santos, M.C. Medeiros, T.M. Oliveira, C.C. Morais, S.E. Mazzetto, C.A. Martínez-Huitle, S.S. Castro, Electrooxidation of cardanol on mixed metal oxide (RuO2-TiO2 and IrO2-RuO2-TiO2) coated titanium anodes: insights into recalcitrant phenolic compounds, Electrochim. Acta, 212 (2016) 95–101.
  18. M.J. Pacheco, V. Santos, L. Ciríaco, A. Lopes, Electrochemical degradation of aromatic amines on BDD electrodes, J. Hazard. Mater., 186 (2011) 1033–1041.
  19. C. Zhou, Y. Wang, J. Chen, J. Niu, Electrochemical degradation of sunscreen agent benzophenone-3 and its metabolite by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, mechanism, toxicity and energy consumption, Sci. Total Environ., 688 (2019) 75–82.
  20. C. Wang, L. Yin, Z. Xu, J. Niu, L.A. Hou, Electrochemical degradation of enrofloxacin by lead dioxide anode: kinetics, mechanism and toxicity evaluation, Chem. Eng. J., 326 (2017) 911–920.
  21. S. Gao, Y. Chen, J. Su, M. Wang, X. Wei, T. Jiang, Z.L. Wang, Triboelectric nanogenerator powered electrochemical degradation of organic pollutant using Pt-free carbon materials, ACS Nano, 11 (2017) 3965–3972.
  22. Y. Yao, G. Teng, Y. Yang, B. Ren, L. Cui, Electrochemical degradation of neutral red on PbO2/α-Al2O3 composite electrodes: electrode characterization, by-products and degradation mechanism, Sep. Purif. Technol., 227 (2019) 115684, doi: 10.1016/j.seppur.2019.115684.
  23. M. Shestakova, M. Sillanpää, Electrode materials used for electrochemical oxidation of organic compounds in wastewater, Rev. Environ. Sci. Biotechnol., 16 (2017) 223–238.
  24. L. Zhou, W. Song, Z. Chen, G. Yin, Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst, Environ. Sci. Technol., 47 (2013) 3833–3839.
  25. A. Yaqub, M.H. Isa, H. Ajab, Electrochemical degradation of polycyclic aromatic hydrocarbons in synthetic solution and produced water using a Ti/SnO2-Sb2O5-RuO2 anode, J. Environ. Eng., 141 (2015) 04014074, doi: 10.1061/(ASCE)EE.1943-7870.0000900.
  26. X. Song, Q. Shi, H. Wang, S. Liu, C. Tai, Z. Bian, Preparation of Pd-Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation-reduction properties for chlorophenols, Appl. Catal., B, 203 (2017) 442–451.
  27. Q. Shi, H. Wang, S. Liu, L. Pang, Z. Bian, Electrocatalytic reduction-oxidation of chlorinated phenols using a nanostructured Pd-Fe modified graphene catalyst, Electrochim. Acta, 178 (2015) 92–100.
  28. H. Setiyanto, F.M. Sari, M.Y. Azis, R.S. Rahayu, A. Sulaeman, M.A. Zulfikar, D. Ratnaningrum, V. Saraswaty, Electrochemical degradation of methylene blue using Ce(IV) ionic mediator in the presence of Ag(I) ion catalyst for environmental remediation, 51 (2021) 149–159.
  29. R.V. McQuillan, G.W. Stevens, K.A. Mumford, Electrochemical removal of naphthalene from contaminated waters using carbon electrodes, and viability for environmental deployment, J. Hazard. Mater., 383 (2020) 121244, doi: 10.1016/j.jhazmat.2019.121244.
  30. K. Tian, K. Baskaran, A. Tiwari, Nonenzymatic glucose sensing using metal oxides–comparison of CuO, Co3O4, and NiO, Vacuum, 155 (2018) 696–701.
  31. G. Manjari, S. Saran, T. Arun, A.V. Rao, S.P. Devipriya, Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract, J. Saudi Chem. Soc., 21 (2017) 610–618.
  32. Z. Ma, Cobalt oxide catalysts for environmental remediation, Curr. Catal., 3 (2014) 15–26.
  33. A. Haider, M. Ijaz, S. Ali, J. Haider, M. Imran, H. Majeed, I. Shahzadi, M.M. Ali, J.A. Khan, M. Ikram, Green synthesized phytochemically (Zingiber officinale and Allium sativum) reduced nickel oxide nanoparticles confirmed bactericidal and catalytic potential, Nanoscale Res. Lett., 15 (2020) 50,
    doi: 10.1186/s11671-020-3283-5.
  34. F.K. Tan, J. Hassan, Z.A. Wahab, Electrical conductivity and dielectric studies of MnO2 doped V2O5, Results Phys., 6 (2016) 420–427.
  35. M. Rasouli, H. Atashi, D. Mohebbi-Kalhori, N. Yaghobi, Bifunctional Pt/Fe-ZSM-5 catalyst for xylene isomerization, J. Taiwan Inst. Chem. Eng., 78 (2017) 438–446.
  36. Z.H. He, N. Li, K. Wang, W.T. Wang, Z.T. Liu, Selective hydrogenation of quinolines over a CoCu bimetallic catalyst at low temperature, J. Mol. Catal. B: Enzym., 470 (2019) 120–126.
  37. S.P. Kamble, V.D. Mote, Optical and room-temperature ferromagnetic properties of Ni-doped CuO nanocrystals prepared via auto-combustion method, J. Mater. Sci.: Mater. Electron., 32 (2021) 5309–5315.
  38. P. Viswanathan, K. Wang, J. Li, J.D. Hong, Multicore–shell Ag–CuO networked with CuO nanorods for enhanced nonenzymatic glucose detection, Colloids Surf., A, 598 (2020) 124816, doi: 10.1016/j.colsurfa.2020.124816.
  39. L. Barrientos, S. Rodriguez-Llamazares, J. Merchani, P. Jara, N. Yutronic, V. Lavayen, Unveiling the structure of Ni/Ni oxide nanoparticles system, J. Chil. Chem. Soc., 54 (2009) 391–393.
  40. N. Rahemi, M. Haghighi, A.A. Babaluo, S. Allahyari, M.F. Jafari, Syngas production from reforming of greenhouse gases CH4/CO2 over Ni–Cu/Al2O3 nanocatalyst: impregnated vs. plasmatreated catalyst, Energy Convers. Manage., 84 (2014) 50–59.
  41. M.P. Srinivasan, N. Punithavelan, Structural, morphological and dielectric investigations on NiO/CuO/ZnO combined semiconductor metal oxide structures based ternary nanocomposites, Mater. Res. Express, 5 (2018) 075033, doi: 10.1088/2053-1591/aad079.
  42. R.T. Rasheed, H.S. Mansoor, A.S. Mansoor, New colorimetric method to determine catalase mimic activity, Mater. Res. Express, 7 (2020) 025405, doi: 10.1088/2053-1591/ab706b.
  43. H. Jiang, L. Yang, C. Li, C. Yan, P.S. Lee, J. Ma, High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires, Energy Environ. Sci., 4 (2011) 1813–1819.
  44. X. Zhang, J.G. Wang, H. Liu, H. Liu, B. Wei, Facile synthesis of V2O5 hollow spheres as advanced cathodes for highperformance lithium-ion batteries, Materials, 10 (2017) 77, doi: 10.3390/ma10010077.
  45. D.M. Alqahtani, C. Zequine, C.K. Ranaweera, K. Siam, P.K. Kahol, T.P. Poudel, S.R. Mishra, R.K. Gupta, Effect of metal ion substitution on electrochemical properties of cobalt oxide, J. Alloys Compd., 771 (2019) 951–959.
  46. H.M. Robert, D. Usha, M. Amalanathan, R.R.J. Geetha, M.S.M. Mary, Spectroscopic (IR, Raman, UV, NMR) characterization and investigation of reactive properties of pyrazine-2-carboxamide by anti-bacterial, anti-mycobacterial, Fukui function, molecular docking and DFT calculations, Chem. Data Collect., 30 (2020) 100583, doi: 10.1016/j.cdc.2020.100583.
  47. U. Riaz, N. Singh, P. Kumar, Ultrasound-assisted synthesis of fluorescent oligomers of triphenylamine modified polyquinones: a comparison of experimental and computational spectral studies, J. Mol. Struct., 1217 (2020) 128374, doi: 10.1016/j.molstruc.2020.128374.
  48. T.F. Borgati, J.D.D. Souza Filho, A.B.D. Oliveira, A complete and unambiguous 1H and 13C-NMR signals assignment of paranaphthoquinones, ortho-and para-furanonaphthoquinones, J. Braz. Chem. Soc., 30 (2019) 1138–1149.
  49. J.W. Daniel, H. Bratt, The absorption, metabolism and tissue distribution of di(2-ethylhexyl) phthalate in rats, Toxicology, 2 (1974) 51–65.
  50. M.R. Habib, M.R. Karim, Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (Linn.) flower, Mycobiology, 37 (2009) 31–36.
  51. G.N. Rao, P.M. Kumar, V.S. Dhandapani, T.R. Krishna, T. Hayashi, Constituents of Cassia auriculata, Fitoterapia, 71 (2000) 82–83.
  52. P. Amade, M. Mallea, N. Bouaicha, Isolation, structural identification and biological activity of two metabolites produced by Penicillium olsonii Bainier and Sartory, J. Antibiot., 47 (1994) 201–208.
  53. D. Jalil, N.A. Fakhre, Extraction, identification and determination of di-(2ethylhexyl) phthalate (DEHP) plasticizer in some stored blood samples bags using different spectroscopic techniques, Ibn AL-Haitham J. Pure Appl. Sci. Technol., 29 (2017) 155–170.
  54. Q. Du, L. Shen, L. Xiu, G. Jerz, P. Winterhalter, Di-2-ethylhexyl phthalate in the fruits of Benincasa hispida, Food Addit. Contam., 23 (2006) 552–555.
  55. R. Pournejati, R. Gust, J. Sagasser, B. Kircher, K. Jöhrer, M.M. Ghanbari, H.R. Karbalaei-Heidari, In vitro evaluation of cytotoxic effects of di(2-ethylhexyl) phthalate (DEHP) produced by Bacillus velezensis strain RP137 isolated from Persian Gulf, Toxicol. in Vitro, 73 (2021) 105148, doi: 10.1016/j.tiv.2021.105148.
  56. M.M. Lotfy, H.M. Hassan, M.H. Hetta, A.O. El-Gendy, R. Mohammed, Di-(2-ethylhexyl) phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori, Beni-Seuf Univ. J. Basic Appl. Sci., 7 (2018) 263–269.
  57. D. Jalil, N.A. Fakhre, Extraction, identification and determination of di-(2ethylhexyl) phthalate (DEHP) plasticizer in some stored blood samples bags using different spectroscopic techniques, Ibn Al-Haitham J. Pure Appl. Sci. Technol., 29 (2017) 155–170.
  58. U.M. Sani, U.U. Pateh, Isolation of 1, 2-benzenedicarboxylic acid bis (2-ethylhexyl) ester from methanol extract of the variety minor seeds of Ricinus communis Linn. (Euphorbiaceae), Nig. J. Pharm. Sci., 8 (2009) 107–114.
  59. H. Shen, L. Ying, Y. Cao, G. Pan, L. Zhou, Simultaneous determination of phthalates and parabens in cosmetic products by gas chromatography/mass spectrometry coupled with solid phase extraction, Chin. J. Chromatogr. (Se Pu), 25 (2007) 272–275.
  60. Y. Kudo, K. Obayashi, H. Yanagisawa, F. Maruyama, S. Fujimaki, H. Miyagawa, K. Nakagawa, Development of a screening method for phthalate esters in polymers using a quantitative database in combination with pyrolyzer/thermal desorption gas chromatography mass spectrometry, J. Chromatogr. A, 1602 (2019) 441–449.
  61. V.N. Kouloumbos, D.F. Tsipi, A.E. Hiskia, D. Nikolic, R.B. van Breemen, Identification of photocatalytic degradation products of diazinon in TiO2 aqueous suspensions using GC/MS/MS and LC/MS with quadrupole time-of-flight mass spectrometry, J. Am. Soc. Mass Spectrom., 14 (2003) 803–817.