References
- R.T. Zoeller, T.R. Brown, L.L. Doan, A.C. Gore, N.E. Skakkebaek,
A.M. Soto, T.J. Woodruff, F.S. Vom Saal,
Endocrine-disrupting
chemicals and public health protection: a statement of principles
from the endocrine society, Endocrinology, 153 (2012) 1422,
doi: 10.1210/en.2012-1422.
- M.P. Fernandez, M.G. Ikonomou, I. Buchanan, An assessment
of estrogenic organic contaminants in Canadian wastewaters,
Sci. Total Environ., 373 (2007) 250–269.
- E.N. Bocharnikova, O.N. Tchaikovskaya, O.K. Bazyl,
V.Y. Artyukhov, G.V. Mayer, Chapter Seven – Theoretical Study
of Bisphenol A Photolysis, In: Advances in Quantum Chemistry,
Vol. 81, 2020, pp. 191–217.
- L. Luo, Y. Yang, M. Xiao, L. Bian, B. Yuan, Y. Liu, F. Jiang,
X. Pan, A novel biotemplated synthesis of TiO2/wood
charcoal composites for synergistic removal of bisphenol A
by adsorption and photocatalytic degradation, Chem. Eng. J.,
262 (2015) 1275–1283.
- H. Zhang, J. Shi, X. Liu, X. Zhan, Q. Chen, Occurrence and
removal of free estrogens, conjugated estrogens, and bisphenol
A in manure treatment facilities in East China, Water Res.,
58 (2014) 248–257.
- M.H. Mahmoudian, A. Mesdaghinia, A.H. Mahvi, S. Nasseri,
R. Nabizadeh, M.H. Dehghani, Photocatalytic degradation
of bisphenol A from aqueous solution using bismuth ferric
magnetic nanoparticle: synthesis, characterization and
response surface methodology-central composite design
modeling, J. Environ. Health. Sci. Eng., (2022), doi: 10.1007/s40201-021-00762-2.
- N. Mandel, B. Gamboa, M. Cebrián, Á. Mérida-Ortega,
Challenges to regulate products containing bisphenol A:
implications for policy, Salud. Publica. Mex., 61 (2019) 692–697.
- J.B. Hansen, N. Bilenberg, C.A.G. Timmermann, R.C. Jensen,
H. Frederiksen, A.M. Andersson, H.B. Kyhl, T.K. Jensen,
Prenatal exposure to bisphenol A and autistic- and ADHDrelated
symptoms in children aged 2 and 5 years from
the Odense Child Cohort, Environ. Health., 20 (2021) 24,
doi: 10.1186/s12940-021-00709-y.
- W. Ratajczak-Wrona, M. Garley, M. Rusak, K. Nowak,
J. Czerniecki, K. Wolosewicz, M. Dabrowska, S. Wolczynski,
P. Radziwon, E. Jablonska, Sex-dependent dysregulation of
human neutrophil responses by bisphenol A, Environ. Health.,
20 (2021) 5, doi: 10.1186/s12940-020-00686-8.
- I. Forner-Piquer, I. Fakriadis, C. Mylonas, F. Piscitelli, V. Di
Marzo, F. Maradonna, J. Calduch-Giner, J. Pérez-Sánchez,
O. Carnevali, Effects of dietary bisphenol A on the reproductive
function of gilthead sea bream (Sparus aurata) testes, Int. J. Mol.
Sci., 20 (2019) 5003, doi: 10.3390/ijms20205003.
- Z.-h. Liu, Y. Kanjo, S. Mizutani, Removal mechanisms for
endocrine disrupting compounds (EDCs) in wastewater
treatment—physical means, biodegradation, and chemical
advanced oxidation: a review, Sci. Total Environ., 407 (2009)
731–748.
- K.J. Choi, S.G. Kim, C.W. Kim, J.K. Park, Removal efficiencies
of endocrine disrupting chemicals by coagulation/flocculation,
ozonation, powdered/granular activated carbon adsorption,
and chlorination, Korean J. Chem. Eng., 23 (2006) 399–408.
- T. Garoma, S. Matsumoto, Ozonation of aqueous solution
containing bisphenol A: effect of operational parameters,
J. Hazard. Mater., 167 (2009) 1185–1191.
- A.N. Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome
Black T using NiS-P zeolite as a heterogeneous catalyst,
J. Hazard. Mater., 176 (2010) 629–637.
- A. Cesaro, V. Belgiorno, Removal of endocrine disruptors from
urban wastewater by advanced oxidation processes (AOPs):
a review, Open Biotechnol. J., 10 (2016) 151–172.
- M. Umar, F. Roddick, L. Fan, H.A. Aziz, Application of ozone
for the removal of bisphenol A from water and wastewater – a
review, Chemosphere, 90 (2013) 2197–2207.
- M. Umar, H.A. Aziz, M.S. Yusoff, Trends in the use of Fenton,
electro-Fenton and photo-Fenton for the treatment of landfill
leachate, Waste Manage., 30 (2010) 2113–2121.
- C. Wang, H. Zhang, F. Li, L. Zhu, Degradation and mineralization
of bisphenol A by mesoporous Bi2WO6 under simulated solar
light irradiation, Environ. Sci. Technol., 44 (2010) 6843–6848.
- M. Ahmadi, H. Rahmani, A. Takdastan, N. Jaafarzadeh,
A. Mostoufi, A novel catalytic process for degradation of
bisphenol A from aqueous solutions: a synergistic effect of
nano-Fe3O4@Alg-Fe on O3/H2O2, Process Saf. Environ. Prot.,
104 (2016) 413–421.
- L. Zhang, H. Ye. L. Zhao, L. Zhang, L. Yao, Y. Zhang, H. Li,
Design isolated iron species for Fenton reaction: lyophilization
beat calcination treatment, Chem. Commun., 51 (2015),
doi: 10.1039/C5CC06590A.
- L. Chen, J. Ma, X. Li, J. Zhang, J. Fang, Y. Guan, P. Xie,
Strong enhancement on Fenton oxidation by addition of
hydroxylamine to accelerate the ferric and ferrous iron cycles,
Environ. Sci. Technol., 45 (2011) 3925–3930.
- M. Rezaei, A. Nezamzadeh-Ejhieha, The ZnO-NiO nanocomposite:
a brief characterization, kinetic and thermodynamic
study and study the Arrhenius model on the sulfasalazine
photodegradation, Int. J. Hydrogen Energy, 45 (2020)
24749–24764.
- H. Derikvandi, A. Nezamzadeh-Ejhieh, Synergistic effect of
p-n heterojunction, supporting and zeolite nanoparticles in
enhanced photocatalytic activity of NiO and SnO2, J. Colloid
Interface Sci., 490 (2017) 314–327.
- N.E. Fard, R. Fazaeli, Experimental design study of RB 255
photocatalytic degradation under visible light using synthetic
Ag/TiO2 nanoparticles: optimization of experimental conditions,
Iran J. Catal., 8 (2018) 133–141.
- P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy,
A.V. Raghu, C.V. Reddy, Recent progress in
metal-doped TiO2,
non-metal doped/codoped TiO2 and TiO2 nanostructured
hybrids for enhanced photocatalysis, Int. J. Hydrogen Energy,
45 (2020) 7764–7778.
- K. Djebli, H. Tebani, A. Abdessemed, N. Keghouche,
Structural, optical and photocatalytic properties of ZnS/zeolite Y nanoparticles synthesized by γ-ray irradiation, Mater.
Sci. Semicond. Process., 103 (2019) 104599, doi: 10.1016/j.mssp.2019.104599.
- Q. Wu, Z. Zhang, The fabrication of magnetic recyclable
nitrogen modified titanium dioxide/strontium ferrite/
diatomite heterojunction nanocomposite for enhanced
visible-light-driven photodegradation of tetracycline, Int. J.
Hydrogen Energy, 44 (2019) 8261–8272.
- N. Raza, W. Raza, H. Gul, K.-H. Kim, ZnO-ZnTe hierarchical
superstructures as solar-light-activated photocatalysts for azo
dye removal, Environ. Res., 194 (2021) 110499, doi: 10.1016/j.envres.2020.110499.
- M. Fazlzadeh, A. Rahmani, H.R. Nasehinia, H. Rahmani,
K. Rahmani, Degradation of sulfathiazole antibiotics in
aqueous solutions by using zero valent iron nanoparticles
and hydrogen peroxide, Koomesh, (2016) 350–356.
- S. Dianat, Visible light induced photocatalytic degradation
of direct red 23 and direct brown 166 by InVO4-TiO2
nanocomposite, Iran. J. Catal., 8 (2018) 121–132.
- M. Bordbar, Z. Sayban, A. Yeganeh-Faal, B. Khodadadi,
Incorporation of Pb2+, Fe2+ and Cd2+ ions in ZnO nanocatalyst
for photocatalytic activity, Iran. J. Catal., 8 (2018) 113–120.
- S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, S. Ghosh, Novel
ZnO/Ag3PO4/AgI photocatalysts: preparation, characterization,
and the excellent visible-light photocatalytic performances,
Mater. Sci. Semicond. Process., 119 (2020) 105229, doi: 10.1016/j.mssp.2020.105229.
- M.L. Maya-Treviño, M. Villanueva-Rodríguez, J.L. Guzmán-Mar, L. Hinojosa-Reyesa, A. Hernández-Ramírez, Comparison
of the solar photocatalytic activity of ZnO-Fe2O3 and ZnO-Fe0
on 2,4-D degradation in a CPC reactor, Photochem. Photobiol.
Sci., 14 (2015) 543–549.
- E.R. Bandala, C.A. Arancibia-Bulnes, S.L. Orozco,
C.A. Estrada, Solar photoreactors comparison based on oxalic
acid photocatalytic degradation, Sol. Energy, 77 (2004) 503–512.
- E.G. Mbonimpa, B. Vadheim, E.R. Blatchley, Continuous-flow
solar UVB disinfection reactor for drinking water, Water Res.,
46 (2012) 2344–2354.
- A. Yazdanbakhsh, A. Rahmani, M. Massoudinejad, M. Jafari,
M. Dashtdar, Accelerating the solar disinfection process of
water using modified compound parabolic concentrators
(CPCs) mirror, Desal. Water Treat., 57 (2016) 23719–23727.
- A. Yazdanbakhsh, K. Rahmani, H. Rahmani, M. Sarafraz,
M. Tahmasebizadeh, A. Rahmani, Inactivation of fecal coliforms
during solar and photocatalytic disinfection by zinc oxide
(ZnO) nanoparticles in compound parabolic concentrators
(CPCs), Iran. J. Catal., 9 (2019) 339–346.
- M. Ahmadi, K. Rahmani, A. Rahmani, H. Rahmani, Removal
of benzotriazole by photo-Fenton like process using nano zerovalent
iron: response surface methodology with a Box–Behnken
design, Pol. J. Chem. Technol., 19 (2017) 104–112.
- M. Rezaee, Y. Yamini, S. Shariati, A. Esrafili, M. Shamsipur,
Dispersive liquid–liquid microextraction combined with highperformance
liquid chromatography-UV detection as a very
simple, rapid and sensitive method for the determination of
bisphenol A in water samples, J. Chromatogr. A, 1216 (2009)
1511–1514.
- L. Xu, L. Yang, E.M.J. Johansson, Y. Wang, P. Jin, Photocatalytic
activity and mechanism of bisphenol A removal over TiO2–x/rGO nanocomposite driven by visible light, Chem. Eng. J.,
350 (2018) 1043–1055.
- G. Moussavi, M. Pourakbar, S. Shekoohiyan, M. Satari, The
photochemical decomposition and detoxification of bisphenol
A in the VUV/H2O2 process: degradation, mineralization, and
cytotoxicity assessment, Chem. Eng. J., 331 (2018) 755–764.
- M. Masihpour, H. Nassehinia, A. Rahmani, Photocatalytic
degradation of cefazolin over TiO2 coated on the fixed bed
under UVC and solar, Desal. Water Treat., 184 (2020) 243–251.
- M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, A comprehensive
study on photocatalytic activity of supported Ni/Pb
sulfide and oxide systems onto natural zeolite nanoparticles,
J. Hazard. Mater., 318 (2016) 291–301.
- H. Derikvandi, A. Nezamzadeh-Ejhieh, A comprehensive study
on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles, J. Mol. Catal. A: Chem., 426 (2017)
158–169.
- A. Noruozi, A. Nezamzadeh-Ejhieh, Preparation, characterization,
and investigation of the catalytic property
of
α-Fe2O3-ZnO nanoparticles in the photodegradation and
mineralization of methylene blue, Chem. Phys. Lett., 752 (2020)
137587, doi: 10.1016/j.cplett.2020.137587.
- S. Aghdasi, M. Shokri, Photocatalytic degradation of
ciprofloxacin in the presence of synthesized ZnO nanocatalyst:
the effect of operational parameters, Iran. J. Catal., 6 (2016)
481–487.
- Y.M. Kang, M.K. Kim, K.D. Zoh, Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and
degradation mechanism of bisphenol-A during UV photolysis,
Chemosphere, 204 (2018) 148–155.
- B. Wang, F. Wu, P. Li, N. Deng, UV-light induced
photodegradation of bisphenol A in water: kinetics and
influencing factors, React. Kinet. Catal. Lett., 92 (2007) 3–9.
- M. Pirhashemi, A. Habibi-Yangjeh, Preparation of novel
nanocomposites by deposition of Ag2WO4 and AgI over ZnO
particles: efficient plasmonic visible-light-driven photocatalysts
through a cascade mechanism, Ceram. Int., 43 (2017)
13447–13460.
- M. Moonsiri, P. Rangsunvigit, S. Chavadej, E. Gulari, Effects of
Pt and Ag on the photocatalytic degradation
of 4-chlorophenol
and its by-products, Chem. Eng. J., 97 (2004) 241–248.
- A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, Effect of a nanosized
natural clinoptilolite modified by the hexadecyltrimethyl
ammonium surfactant on cephalexin drug delivery, C.R. Chim.,
17 (2014) 49–61.
- M. Mansoury, H. Godini, G. Shams Khorramabadi,
Photocatalytic removal of natural organic matter from aqueous
solutions using zinc oxide nanoparticles immobilized on glass,
Iran. J. Health. Environ., 8 (2015) 181–190.
- J.M. Lee, M.S. Kim, B.W. Kim, Photodegradation of bisphenol-A
with TiO2 immobilized on the glass tubes including the UV
light lamps, Water Res., 38 (2004) 3605–3613.
- R. Dianati Tilaki, M.A. Zazoli, J. Charati, M. Alamgholilu,
E. Rostamali. Degradation of 4-chlorophenol by sunlight using
catalyst of zinc oxide, J. Mazand. Univ. Med. Sci., 23 (2014)
195–201.
- T. Nakashima, Y. Ohko, Y. Kubota, A. Fujishima,
Photocatalytic decomposition of estrogens in aquatic
environment by reciprocating immersion of TiO2-modified
polytetrafluoroethylene mesh sheets, J. Photochem. Photobiol.,
A, 160 (2003) 115–120.
- R. Wang, D. Ren, S. Xia, Y. Zhang, J. Zhao, Photocatalytic
degradation of bisphenol A (BPA) using immobilized TiO2 and
UV illumination in a horizontal circulating bed photocatalytic
reactor (HCBPR), J. Hazard. Mater., 169 (2009) 926–932.
- K.V.A. Kumar, B. Lakshminarayana, T. Vinodkumar,
C. Subrahmanyam, Cu-ZnO for visible light induced
mineralization of bisphenol-A: impact of Cu ion doping,
J. Environ. Chem. Eng., 7 (2019) 103057, doi: 10.1016/j.jece.2019.103057.
- J. Sharma, I.M. Mishra, V. Kumar, Degradation and
mineralization of bisphenol A (BPA) in aqueous solution using
advanced oxidation processes: UV/H2O2 and oxidation systems,
J. Environ. Manage., 156 (2015) 266–275.
- G. Moussavi, M. Pourakbar, S. Shekoohiyan, M. Satari, The
photochemical decomposition and detoxification of bisphenol
A in the VUV/H2O2 process: degradation, mineralization, and
cytotoxicity assessment, Chem. Eng. J., 331 (2018) 755–764.
- N. Bolong, A.F. Ismail, M.R. Salim, D. Rana, T. Matsuura,
A. Tabe-Mohammadi, Negatively charged polyethersulfone
hollow fiber nanofiltration membrane for the removal of
bisphenol A from wastewater, Sep. Purif. Technol., 73 (2010)
92–99.
- D.P. Subagio, M. Srinivasan, M. Lim, T.T. Lim, Photocatalytic
degradation of bisphenol-A by nitrogen-doped TiO2 hollow
sphere in a vis-LED photoreactor, Appl. Catal., B, 95 (2010)
414–422.
- O. Bechambi, S. Sayadi, W. Najjar, Photocatalytic degradation
of bisphenol A in the presence of C-doped ZnO: effect of
operational parameters and photodegradation mechanism,
J. Ind. Eng. Chem., 32 (2015) 201–210.