References

  1. R.T. Zoeller, T.R. Brown, L.L. Doan, A.C. Gore, N.E. Skakkebaek, A.M. Soto, T.J. Woodruff, F.S. Vom Saal,
    Endocrine-disrupting chemicals and public health protection: a statement of principles from the endocrine society, Endocrinology, 153 (2012) 1422, doi: 10.1210/en.2012-1422.
  2. M.P. Fernandez, M.G. Ikonomou, I. Buchanan, An assessment of estrogenic organic contaminants in Canadian wastewaters, Sci. Total Environ., 373 (2007) 250–269.
  3. E.N. Bocharnikova, O.N. Tchaikovskaya, O.K. Bazyl, V.Y. Artyukhov, G.V. Mayer, Chapter Seven – Theoretical Study of Bisphenol A Photolysis, In: Advances in Quantum Chemistry, Vol. 81, 2020, pp. 191–217.
  4. L. Luo, Y. Yang, M. Xiao, L. Bian, B. Yuan, Y. Liu, F. Jiang, X. Pan, A novel biotemplated synthesis of TiO2/wood charcoal composites for synergistic removal of bisphenol A by adsorption and photocatalytic degradation, Chem. Eng. J., 262 (2015) 1275–1283.
  5. H. Zhang, J. Shi, X. Liu, X. Zhan, Q. Chen, Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China, Water Res., 58 (2014) 248–257.
  6. M.H. Mahmoudian, A. Mesdaghinia, A.H. Mahvi, S. Nasseri, R. Nabizadeh, M.H. Dehghani, Photocatalytic degradation of bisphenol A from aqueous solution using bismuth ferric magnetic nanoparticle: synthesis, characterization and response surface methodology-central composite design modeling, J. Environ. Health. Sci. Eng., (2022), doi: 10.1007/s40201-021-00762-2.
  7. N. Mandel, B. Gamboa, M. Cebrián, Á. Mérida-Ortega, Challenges to regulate products containing bisphenol A: implications for policy, Salud. Publica. Mex., 61 (2019) 692–697.
  8. J.B. Hansen, N. Bilenberg, C.A.G. Timmermann, R.C. Jensen, H. Frederiksen, A.M. Andersson, H.B. Kyhl, T.K. Jensen, Prenatal exposure to bisphenol A and autistic- and ADHDrelated symptoms in children aged 2 and 5 years from the Odense Child Cohort, Environ. Health., 20 (2021) 24, doi: 10.1186/s12940-021-00709-y.
  9. W. Ratajczak-Wrona, M. Garley, M. Rusak, K. Nowak, J. Czerniecki, K. Wolosewicz, M. Dabrowska, S. Wolczynski, P. Radziwon, E. Jablonska, Sex-dependent dysregulation of human neutrophil responses by bisphenol A, Environ. Health., 20 (2021) 5, doi: 10.1186/s12940-020-00686-8.
  10. I. Forner-Piquer, I. Fakriadis, C. Mylonas, F. Piscitelli, V. Di Marzo, F. Maradonna, J. Calduch-Giner, J. Pérez-Sánchez, O. Carnevali, Effects of dietary bisphenol A on the reproductive function of gilthead sea bream (Sparus aurata) testes, Int. J. Mol. Sci., 20 (2019) 5003, doi: 10.3390/ijms20205003.
  11. Z.-h. Liu, Y. Kanjo, S. Mizutani, Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—physical means, biodegradation, and chemical advanced oxidation: a review, Sci. Total Environ., 407 (2009) 731–748.
  12. K.J. Choi, S.G. Kim, C.W. Kim, J.K. Park, Removal efficiencies of endocrine disrupting chemicals by coagulation/flocculation, ozonation, powdered/granular activated carbon adsorption, and chlorination, Korean J. Chem. Eng., 23 (2006) 399–408.
  13. T. Garoma, S. Matsumoto, Ozonation of aqueous solution containing bisphenol A: effect of operational parameters, J. Hazard. Mater., 167 (2009) 1185–1191.
  14. A.N. Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst, J. Hazard. Mater., 176 (2010) 629–637.
  15. A. Cesaro, V. Belgiorno, Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review, Open Biotechnol. J., 10 (2016) 151–172.
  16. M. Umar, F. Roddick, L. Fan, H.A. Aziz, Application of ozone for the removal of bisphenol A from water and wastewater – a review, Chemosphere, 90 (2013) 2197–2207.
  17. M. Umar, H.A. Aziz, M.S. Yusoff, Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate, Waste Manage., 30 (2010) 2113–2121.
  18. C. Wang, H. Zhang, F. Li, L. Zhu, Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation, Environ. Sci. Technol., 44 (2010) 6843–6848.
  19. M. Ahmadi, H. Rahmani, A. Takdastan, N. Jaafarzadeh, A. Mostoufi, A novel catalytic process for degradation of bisphenol A from aqueous solutions: a synergistic effect of nano-Fe3O4@Alg-Fe on O3/H2O2, Process Saf. Environ. Prot., 104 (2016) 413–421.
  20. L. Zhang, H. Ye. L. Zhao, L. Zhang, L. Yao, Y. Zhang, H. Li, Design isolated iron species for Fenton reaction: lyophilization beat calcination treatment, Chem. Commun., 51 (2015), doi: 10.1039/C5CC06590A.
  21. L. Chen, J. Ma, X. Li, J. Zhang, J. Fang, Y. Guan, P. Xie, Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles, Environ. Sci. Technol., 45 (2011) 3925–3930.
  22. M. Rezaei, A. Nezamzadeh-Ejhieha, The ZnO-NiO nanocomposite: a brief characterization, kinetic and thermodynamic study and study the Arrhenius model on the sulfasalazine photodegradation, Int. J. Hydrogen Energy, 45 (2020) 24749–24764.
  23. H. Derikvandi, A. Nezamzadeh-Ejhieh, Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2, J. Colloid Interface Sci., 490 (2017) 314–327.
  24. N.E. Fard, R. Fazaeli, Experimental design study of RB 255 photocatalytic degradation under visible light using synthetic Ag/TiO2 nanoparticles: optimization of experimental conditions, Iran J. Catal., 8 (2018) 133–141.
  25. P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, C.V. Reddy, Recent progress in
    metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis, Int. J. Hydrogen Energy, 45 (2020) 7764–7778.
  26. K. Djebli, H. Tebani, A. Abdessemed, N. Keghouche, Structural, optical and photocatalytic properties of ZnS/zeolite Y nanoparticles synthesized by γ-ray irradiation, Mater. Sci. Semicond. Process., 103 (2019) 104599, doi: 10.1016/j.mssp.2019.104599.
  27. Q. Wu, Z. Zhang, The fabrication of magnetic recyclable nitrogen modified titanium dioxide/strontium ferrite/ diatomite heterojunction nanocomposite for enhanced visible-light-driven photodegradation of tetracycline, Int. J. Hydrogen Energy, 44 (2019) 8261–8272.
  28. N. Raza, W. Raza, H. Gul, K.-H. Kim, ZnO-ZnTe hierarchical superstructures as solar-light-activated photocatalysts for azo dye removal, Environ. Res., 194 (2021) 110499, doi: 10.1016/j.envres.2020.110499.
  29. M. Fazlzadeh, A. Rahmani, H.R. Nasehinia, H. Rahmani, K. Rahmani, Degradation of sulfathiazole antibiotics in aqueous solutions by using zero valent iron nanoparticles and hydrogen peroxide, Koomesh, (2016) 350–356.
  30. S. Dianat, Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite, Iran. J. Catal., 8 (2018) 121–132.
  31. M. Bordbar, Z. Sayban, A. Yeganeh-Faal, B. Khodadadi, Incorporation of Pb2+, Fe2+ and Cd2+ ions in ZnO nanocatalyst for photocatalytic activity, Iran. J. Catal., 8 (2018) 113–120.
  32. S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, S. Ghosh, Novel ZnO/Ag3PO4/AgI photocatalysts: preparation, characterization, and the excellent visible-light photocatalytic performances, Mater. Sci. Semicond. Process., 119 (2020) 105229, doi: 10.1016/j.mssp.2020.105229.
  33. M.L. Maya-Treviño, M. Villanueva-Rodríguez, J.L. Guzmán-Mar, L. Hinojosa-Reyesa, A. Hernández-Ramírez, Comparison of the solar photocatalytic activity of ZnO-Fe2O3 and ZnO-Fe0 on 2,4-D degradation in a CPC reactor, Photochem. Photobiol. Sci., 14 (2015) 543–549.
  34. E.R. Bandala, C.A. Arancibia-Bulnes, S.L. Orozco, C.A. Estrada, Solar photoreactors comparison based on oxalic acid photocatalytic degradation, Sol. Energy, 77 (2004) 503–512.
  35. E.G. Mbonimpa, B. Vadheim, E.R. Blatchley, Continuous-flow solar UVB disinfection reactor for drinking water, Water Res., 46 (2012) 2344–2354.
  36. A. Yazdanbakhsh, A. Rahmani, M. Massoudinejad, M. Jafari, M. Dashtdar, Accelerating the solar disinfection process of water using modified compound parabolic concentrators (CPCs) mirror, Desal. Water Treat., 57 (2016) 23719–23727.
  37. A. Yazdanbakhsh, K. Rahmani, H. Rahmani, M. Sarafraz, M. Tahmasebizadeh, A. Rahmani, Inactivation of fecal coliforms during solar and photocatalytic disinfection by zinc oxide (ZnO) nanoparticles in compound parabolic concentrators (CPCs), Iran. J. Catal., 9 (2019) 339–346.
  38. M. Ahmadi, K. Rahmani, A. Rahmani, H. Rahmani, Removal of benzotriazole by photo-Fenton like process using nano zerovalent iron: response surface methodology with a Box–Behnken design, Pol. J. Chem. Technol., 19 (2017) 104–112.
  39. M. Rezaee, Y. Yamini, S. Shariati, A. Esrafili, M. Shamsipur, Dispersive liquid–liquid microextraction combined with highperformance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples, J. Chromatogr. A, 1216 (2009) 1511–1514.
  40. L. Xu, L. Yang, E.M.J. Johansson, Y. Wang, P. Jin, Photocatalytic activity and mechanism of bisphenol A removal over TiO2–x/rGO nanocomposite driven by visible light, Chem. Eng. J., 350 (2018) 1043–1055.
  41. G. Moussavi, M. Pourakbar, S. Shekoohiyan, M. Satari, The photochemical decomposition and detoxification of bisphenol A in the VUV/H2O2 process: degradation, mineralization, and cytotoxicity assessment, Chem. Eng. J., 331 (2018) 755–764.
  42. M. Masihpour, H. Nassehinia, A. Rahmani, Photocatalytic degradation of cefazolin over TiO2 coated on the fixed bed under UVC and solar, Desal. Water Treat., 184 (2020) 243–251.
  43. M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles, J. Hazard. Mater., 318 (2016) 291–301.
  44. H. Derikvandi, A. Nezamzadeh-Ejhieh, A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles, J. Mol. Catal. A: Chem., 426 (2017) 158–169.
  45. A. Noruozi, A. Nezamzadeh-Ejhieh, Preparation, characterization, and investigation of the catalytic property
    of α-Fe2O3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue, Chem. Phys. Lett., 752 (2020) 137587, doi: 10.1016/j.cplett.2020.137587.
  46. S. Aghdasi, M. Shokri, Photocatalytic degradation of ciprofloxacin in the presence of synthesized ZnO nanocatalyst: the effect of operational parameters, Iran. J. Catal., 6 (2016) 481–487.
  47. Y.M. Kang, M.K. Kim, K.D. Zoh, Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of bisphenol-A during UV photolysis, Chemosphere, 204 (2018) 148–155.
  48. B. Wang, F. Wu, P. Li, N. Deng, UV-light induced photodegradation of bisphenol A in water: kinetics and influencing factors, React. Kinet. Catal. Lett., 92 (2007) 3–9.
  49. M. Pirhashemi, A. Habibi-Yangjeh, Preparation of novel nanocomposites by deposition of Ag2WO4 and AgI over ZnO particles: efficient plasmonic visible-light-driven photocatalysts through a cascade mechanism, Ceram. Int., 43 (2017) 13447–13460.
  50. M. Moonsiri, P. Rangsunvigit, S. Chavadej, E. Gulari, Effects of Pt and Ag on the photocatalytic degradation
    of 4-chlorophenol and its by-products, Chem. Eng. J., 97 (2004) 241–248.
  51. A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, Effect of a nanosized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery, C.R. Chim., 17 (2014) 49–61.
  52. M. Mansoury, H. Godini, G. Shams Khorramabadi, Photocatalytic removal of natural organic matter from aqueous solutions using zinc oxide nanoparticles immobilized on glass, Iran. J. Health. Environ., 8 (2015) 181–190.
  53. J.M. Lee, M.S. Kim, B.W. Kim, Photodegradation of bisphenol-A with TiO2 immobilized on the glass tubes including the UV light lamps, Water Res., 38 (2004) 3605–3613.
  54. R. Dianati Tilaki, M.A. Zazoli, J. Charati, M. Alamgholilu, E. Rostamali. Degradation of 4-chlorophenol by sunlight using catalyst of zinc oxide, J. Mazand. Univ. Med. Sci., 23 (2014) 195–201.
  55. T. Nakashima, Y. Ohko, Y. Kubota, A. Fujishima, Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets, J. Photochem. Photobiol., A, 160 (2003) 115–120.
  56. R. Wang, D. Ren, S. Xia, Y. Zhang, J. Zhao, Photocatalytic degradation of bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR), J. Hazard. Mater., 169 (2009) 926–932.
  57. K.V.A. Kumar, B. Lakshminarayana, T. Vinodkumar, C. Subrahmanyam, Cu-ZnO for visible light induced mineralization of bisphenol-A: impact of Cu ion doping, J. Environ. Chem. Eng., 7 (2019) 103057, doi: 10.1016/j.jece.2019.103057.
  58. J. Sharma, I.M. Mishra, V. Kumar, Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and oxidation systems, J. Environ. Manage., 156 (2015) 266–275.
  59. G. Moussavi, M. Pourakbar, S. Shekoohiyan, M. Satari, The photochemical decomposition and detoxification of bisphenol A in the VUV/H2O2 process: degradation, mineralization, and cytotoxicity assessment, Chem. Eng. J., 331 (2018) 755–764.
  60. N. Bolong, A.F. Ismail, M.R. Salim, D. Rana, T. Matsuura, A. Tabe-Mohammadi, Negatively charged polyethersulfone hollow fiber nanofiltration membrane for the removal of bisphenol A from wastewater, Sep. Purif. Technol., 73 (2010) 92–99.
  61. D.P. Subagio, M. Srinivasan, M. Lim, T.T. Lim, Photocatalytic degradation of bisphenol-A by nitrogen-doped TiO2 hollow sphere in a vis-LED photoreactor, Appl. Catal., B, 95 (2010) 414–422.
  62. O. Bechambi, S. Sayadi, W. Najjar, Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism, J. Ind. Eng. Chem., 32 (2015) 201–210.